Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 11(2): 1154-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21456153

ABSTRACT

Fibrous membrane with a fibre diameter of 229 +/- 35 nm was fabricated from polyimide solution by electrospinning. Nanofibrous membrane with a fibre diameter of 251 +/- 37 nm was fabricated by combined electrospinning and electrospraying for polyimide/TiO2. Among the different solvents studied, ethanol was the effective solvent for dispersing the TiO2 nanoparticles in the nanofibrous matrix during electrospraying. The average pore size of polyimide membrane was obtained in the range 0.79-0.89 microm whereas the average pore size of polyimide/TiO2 membrane was found to be in the range 1.23 microm. The tensile stress of polyimide nanofibrous membrane and also polyimide/TiO2 composite fibrous membrane determined to be 0.36 MPa and 0.65 MPa respectively. Nanofibrous membrane containing TiO2 nanoparticles on the surface of the polyimide nanofibres improved the mechanical stability of the membrane.

2.
ACS Appl Mater Interfaces ; 2(7): 1844-50, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20617836

ABSTRACT

Mesophase ordering and structuring are carried out to attain optimized pore morphology, high crystallinity, stable porous framework, and crack-free mesoporous titanium dioxide (TiO(2)) films. The pore structure (quasi-hexagonal and lamellar) can be controlled via the concentration of copolymer, resulting in two different types of micellar packing. The calcination temperature is also controlled to ensure a well-crystalline and stable porous framework. Finally, the synthesized mesoporous TiO(2) film is modified by adding P25 nanoparticles, which act as scattering centers and function as active binders to prevent formation of microcracks. Adding P25 nanoparticles into mesoporous structure helps to provide strong light-harvesting capability and large surface area for high -efficiency dye-sensitized solar cells (DSSC). The short-circuit photocurrent density (J(sc)) of the cell made from mixture of mesoporous TiO(2) and P25 nanoparticles displays a higher efficiency of approximately 6.5% compared to the other homogeneous films. A combination of factors such as increased surface area, introduction of light-scattering particles, and high crystallinity of the mesoporous films leads to enhanced cell performance.


Subject(s)
Membranes, Artificial , Nanoparticles , Solar Energy , Titanium , Porosity
3.
Acta Biomater ; 6(10): 4100-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20466085

ABSTRACT

Currently, the application of nanotechnology in bone tissue regeneration is a challenge for the fabrication of novel bioartificial bone grafts. These nanostructures are capable of mimicking natural extracellular matrix with effective mineralization for successful regeneration of damaged tissues. The simultaneous electrospraying of nanohydroxyapatite (HA) on electrospun polymeric nanofibrous scaffolds might be more promising for bone tissue regeneration. In the current study, nanofibrous scaffolds of gelatin (Gel), Gel/HA (4:1 blend), Gel/HA (2:1 blend) and Gel/HA (electrospin-electrospray) were fabricated for this purpose. The morphology, chemical and mechanical stability of nanofibres were evaluated by means of field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy and with a universal tensile machine, respectively. The in vitro biocompatibility of different nanofibrous scaffolds was determined by culturing human foetal osteoblasts and investigating the proliferation, alkaline phosphatase (ALP) activity and mineralization of cells. The results of cell proliferation, ALP activity and FESEM studies revealed that the combination of electrospinning of gelatin and electrospraying of HA yielded biocomposite nanofibrous scaffolds with enhanced performances in terms of better cell proliferation, increased ALP activity and enhanced mineralization, making them potential substrates for bone tissue regeneration.


Subject(s)
Bone Regeneration/physiology , Coated Materials, Biocompatible/chemistry , Electrochemical Techniques/methods , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Animals , Bone and Bones/cytology , Bone and Bones/metabolism , Calcification, Physiologic , Cell Adhesion , Cell Proliferation , Cells, Cultured , Durapatite/chemistry , Electrochemical Techniques/instrumentation , Fetus/cytology , Gelatin/chemistry , Humans , Materials Testing , Osteoblasts/cytology , Osteoblasts/physiology
4.
Nanotechnology ; 20(4): 045604, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-19417324

ABSTRACT

Several important synthetic parameters such as precursor concentration, rate of evaporation and reaction time are found to determine the growth of ZnO nanostructures. These reaction parameters can be tailored and tuned to produce a variety of nanostructures ranging from nanoparticles, nanorods and nanospheres. The nanorods are structurally uniform made up of crystallographically oriented attached nanoparticles while the nanospheres are made up of several closely packed and randomly aligned nanocrystallites. XRD spectra of both the nanoparticles and nanorods exhibit typical diffraction peaks of a well-crystalline wurtzite ZnO structure. Finally, solar cells made up of ZnO nanoparticles and nanorods electrodes with absorbed ruthenium dye (N3) were measured to have a power conversion efficiency of 0.87% and 1.32%, respectively.

5.
Nanotechnology ; 19(42): 424004, 2008 Oct 22.
Article in English | MEDLINE | ID: mdl-21832664

ABSTRACT

The electrochemical and optical properties of three indoline dyes, namely C(35)H(28)N(2)O(2) (D131), C(37)H(30)N(2)O(3)S(2) (D102), and C(42)H(35)N(3)O(4)S(3) (D149), were studied and compared with that of the N3 dye. D131 has the largest bandgap and lowest unoccupied molecular orbital (LUMO) energies compared to the other dyes. A size-dependent variation in the absorptivity of the indoline dyes was observed-the absorptivity increased with increase in the molecular size. The dyes were anchored onto TiO(2) nanorods. The TiO(2) nanorods were obtained by electrospinning a polymeric solution containing titanium isopropoxide and polyvinylpyrrolidone and subsequent sintering of the as-spun composite fibers. Absorption spectral measurements of the dye-anchored TiO(2) showed blue shifts in the excitonic transition of the indoline dyes, the magnitude of which increased with decrease in the molecular size. Dye-sensitized solar cells (DSSCs) were fabricated using the indoline dyes, TiO(2) nanorods, and iodide/triiodide electrolyte. The D131 dye showed comparable energy conversion efficiency (η) to that of the N3 dye. A systematic change in the short circuit current density (J(SC)) and η of the indoline DSSCs was observed. The observed variation in J(C) is most likely originated from the difference in the electronic coupling strengths between the dye and the TiO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...