Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 105(5-1): 054308, 2022 May.
Article in English | MEDLINE | ID: mdl-35706196

ABSTRACT

A basic question in network community detection is how modular a given network is. This is usually addressed by evaluating the quality of partitions detected in the network. The Girvan-Newman (GN) modularity function is the standard way to make this assessment, but it has a number of drawbacks. Most importantly, it is not clearly interpretable, given that the measure can take relatively large values on partitions of random networks without communities. Here we propose a measure based on the concept of robustness: modularity is the probability to find trivial partitions when the structure of the network is randomly perturbed. This concept can be implemented for any clustering algorithm capable of telling when a group structure is absent. Tests on artificial and real graphs reveal that robustness modularity can be used to assess and compare the strength of the community structure of different networks. We also introduce two other quality functions: modularity difference, a suitably normalized version of the GN modularity, and information modularity, a measure of distance based on information compression. Both measures are strongly correlated with robustness modularity, but have lower time complexity, so they could be used on networks whose size makes the calculation of robustness modularity too costly.

2.
Phys Rev E ; 103(2-1): 022316, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736102

ABSTRACT

Graph embedding methods are becoming increasingly popular in the machine learning community, where they are widely used for tasks such as node classification and link prediction. Embedding graphs in geometric spaces should aid the identification of network communities as well because nodes in the same community should be projected close to each other in the geometric space, where they can be detected via standard data clustering algorithms. In this paper, we test the ability of several graph embedding techniques to detect communities on benchmark graphs. We compare their performance against that of traditional community detection algorithms. We find that the performance is comparable, if the parameters of the embedding techniques are suitably chosen. However, the optimal parameter set varies with the specific features of the benchmark graphs, like their size, whereas popular community detection algorithms do not require any parameter. So, it is not possible to indicate beforehand good parameter sets for the analysis of real networks. This finding, along with the high computational cost of embedding a network and grouping the points, suggests that, for community detection, current embedding techniques do not represent an improvement over network clustering algorithms.

3.
Phys Rev E ; 99(4-1): 042301, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108682

ABSTRACT

Algorithms for community detection are usually stochastic, leading to different partitions for different choices of random seeds. Consensus clustering has proven to be an effective technique to derive more stable and accurate partitions than the ones obtained by the direct application of the algorithm. However, the procedure requires the calculation of the consensus matrix, which can be quite dense if (some of) the clusters of the input partitions are large. Consequently, the complexity can get dangerously close to quadratic, which makes the technique inapplicable on large graphs. Here, we present a fast variant of consensus clustering, which calculates the consensus matrix only on the links of the original graph and on a comparable number of additional node pairs, suitably chosen. This brings the complexity down to linear, while the performance remains comparable as the full technique. Therefore, our fast consensus clustering procedure can be applied on networks with millions of nodes and links.

4.
Sensors (Basel) ; 19(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30744047

ABSTRACT

Location-based services present an inherent challenge of finding the delicate balance between efficiency when answering queries and maintaining user privacy. Inevitable security issues arise as the server needs to be informed of the query location to provide accurate responses. Despite the many advancements in localization security in wireless sensor networks, servers can still be infected with malicious software. It is now possible to ensure queries do not generate any fake responses that may appear real to users. When a fake response is used, there are mechanisms that can be employed so that the user can identify the authenticity of the query. For this reason, this paper proposes Bloom Filter 0 Knowledge (BL0K), which is novel phase privacy method that preserves the framework for location-based service (LBS) and combines a Bloom filter and the Zero knowledge protocol. The usefulness of these methods has been shown for securing private user information. Analysis of the results demonstrated that BL0K performance is decidedly better when compared to the referenced approaches using the privacy entropy metric.

5.
Technol Health Care ; 25(5): 903-916, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-28759984

ABSTRACT

This paper aims to analyze possible next generation of networked radio frequency identification (NGN-RFID) system for customer relationship management (CRM) in healthcare industries. Customer relationship and its management techniques in a specific healthcare industry are considered in this development. The key objective of using NGN-RFID scheme is to enhance the handling of patients' data to improve the CRM efficiency in healthcare industries. The proposed NGN-RFID system is one of the valid points to improve the ability of CRM by analyzing different prior and current traditional approaches. The legacy of customer relationship management will be improved by using this modern NGN-RFID technology without affecting the novelty.


Subject(s)
Consumer Behavior/statistics & numerical data , Delivery of Health Care/organization & administration , Electronic Health Records/organization & administration , Hospital-Patient Relations , Radio Frequency Identification Device/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...