Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Endod ; 45(6): 774-783.e6, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30930014

ABSTRACT

INTRODUCTION: The successful treatment of infected or inflamed endodontic tissues requires chemomechanical debridement of the canal spaces and proper sealing of the coronal and apical canal openings. Only a few methods are available to further disinfect areas or initiate regeneration of local tissues. In this study, we assessed the ability of 255-nm and 405-nm light-emitting diode (LED) treatment to kill planktonic cultures of Enterococcus faecalis and induce the production of cellular biomarkers related to endodontic tissue regeneration. METHODS: We determined the antimicrobial effects of 255-nm and 405-nm LED treatment on E. faecalis and the effects of 255-nm and 405-nm LED treatment on the production of osteoinductive, angiogenic, proliferative, and proinflammatory biomarkers from human embryonic palatal mesenchyme (HEPM) cells and gingival fibroblasts. RESULTS: We showed that 255-nm LED but not 405-nm LED treatment killed E. faecalis; the 255-nm LED and sodium hypochlorite more efficiently killed E. faecalis; neither 255-nm nor 405-nm LED treatment affected the viability of HEPM cells and gingival fibroblasts; and 255-nm LED treatment, alone or in combination with 405-nm LED treatment, of HEPM cells and gingival fibroblasts induced the production of biomarkers related to endodontic tissue regeneration. CONCLUSIONS: The results of this study suggest a new treatment modality using short periods of 255-nm LED treatment as an adjunct to chemomechanical debridement for the disinfection of inflamed sites and the production of biomarkers related to endodontic tissue regeneration.


Subject(s)
Enterococcus faecalis , Fibroblasts , Gingiva , Gram-Positive Bacterial Infections , Photosensitizing Agents , Phototherapy , Biomarkers/metabolism , Gingiva/cytology , Gram-Positive Bacterial Infections/therapy , Humans , Mesoderm , Sodium Hypochlorite
SELECTION OF CITATIONS
SEARCH DETAIL
...