Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Photosynth Res ; 33(3): 213-25, 1992 Sep.
Article in English | MEDLINE | ID: mdl-24408665

ABSTRACT

In response to excess light, the xanthophyll violaxanthin (V) is deepoxidized to zeaxanthin (Z) via antheraxanthin (A) and the degree of this deepoxidation is strongly correlated with dissipation of excess energy and photoprotection in PS II. However, little is known about the site of V deepoxidation and the localization of Z within the thylakoid membranes. To gain insight into this problem, thylakoids were isolated from cotton leaves and bundle-sheath strands of maize, the pigment protein-complexes separated on Deriphat gels, electroeluted, and the pigments analyzed by HPLC. In cotton thylakoids, 30% of the xanthophyll cycle pigments were associated with the PS I holocomplex, including the PS I light-harvesting complexes and PS I core complex proteins (CC I), and about 50% with the PS II light-harvesting complexes (LHC II). The Chl was evenly distributed between PS I and PS II. Less than 2% of the neoxanthin, about 18% of the lutein, and as much as 76% of the ß-carotene of the thylakoids were associated with PS I. Exposure of pre-darkened cotton leaves to a high photon flux density for 20 min prior to thylakoid isolation caused about one-half of the V to be converted to Z. The distribution of Z among the pigment-protein complexes was found to be similar to that of V. The distribution of the other carotenoids was unaffected by the light treatment. Similarly, in field-grown maize leaves and in the bundle-sheath strands isolated from them, about 40% of the V present at dawn had been converted to Z at solar noon. Light treatment of isolated bundle-sheath strands which initially contained little Z caused a similar degree of conversion of V to Z. As in cotton thylakoids, about 30% the V+A+Z pool in bundle-sheath thylakoids from maize was associated with the PS I holocomplex and the CC I bands and 46% with the LHC II bands, regardless of the extent of deepoxidation. These results demonstrate that Z is present in PS I as well as in PS II and that deepoxidation evidently takes place within the pigment-protein complexes of both photosystems.

2.
Photosynth Res ; 23(3): 331-43, 1990 Mar.
Article in English | MEDLINE | ID: mdl-24419657

ABSTRACT

As a part of our investigations to test the hypothesis that zeaxanthin formed by reversible de-epoxidation of violaxanthin serves to dissipate any excessive and potentially harmful excitation energy we determined the influence of light climate on the size of the xanthophyll cycle pool (violaxanthin + antheraxanthin + zeaxanthin) in leaves of a number of species of higher plants. The maximum amount of zeaxanthin that can be formed by de-epoxidation of violaxanthin and antheraxanthin is determined by the pool size of the xanthophyll cycle. To quantitate the individual leaf carotenoids a rapid, sensitive and accurate HPLC method was developed using a non-endcapped Zorbax ODS column, giving baseline separation of lutein and zeaxanthin as well as of other carotenoids and Chl a and b.The size of the xanthophyll cycle pool, both on a basis of light-intercepting leaf area and of light-harvesting chlorophyll, was ca. four times greater in sun-grown leaves of a group of ten sun tolerant species than in shade-grown leaves in a group of nine shade tolerant species. In contrast there were no marked or consistent differences between the two groups in the content of the other major leaf xanthophylls, lutein and neoxanthin. Also, in each of four species examined the xanthophyll pool size increased with an increase in the amount of light available during leaf development whereas there was little change in the content of the other xanthophylls. However, the α-carotene/ß-carotene ratio decreased and little or no α-carotene was detected in sun-grown leaves. Among shade-grown leaves the α-carotene/ß-carotene ratio was considerably higher in species deemed to be umbrophilic than in species deemed to be heliophilic.The percentage of the xanthophyll cycle pool present as violaxanthin (di-epoxy-zeaxanthin) at solar noon was 96-100% for shade-grown plants and 4-53% for sun-grown plants with zeaxanthin accounting for most of the balance. The percentage of zeaxanthin in leaves exposed to midday solar radiation was higher in those with low than in those with high photosynthetic capacity.The results are consistent with the hypothesis that the xanthophyll cycle is involved in the regulation of energy dissipation in the pigment bed, thereby preventing a buildup of excessive excitation energy at the reaction centers.

3.
Plant Physiol ; 91(2): 542-51, 1989 Oct.
Article in English | MEDLINE | ID: mdl-16667067

ABSTRACT

When cotton (Gossypium hirsutum L., cv Acaia SJC-1) leaves kept in weak light were suddenly exposed to strong red actinic light a spectral absorbance change took place having the following prominent characteristics. (a) It was irreversible within the first four minute period after darkening. (b) The difference in leaf absorbance between illuminated and predarkened leaves had a major peak at 505 nanometers, a minor peak at 465 nanometers, a shoulder around 515 nanometers, and minor troughs at 455 and 480 nanometers. (c) On the basis of its spectral and kinetic characteristics this absorbance change can be readily distinguished from the much faster electrochromic shift which has a peak at 515 nanometers, from the slow, so-called light-scattering change which has a broad peak centered around 535 nanometers and is reversed upon darkening, and from absorbance changes associated with light-induced chloroplast rearrangements. (d) The extent and time course of this absorbance change closely matched that of the deepoxidation of violaxanthin to zeaxanthin in the same leaves. (e) Both the absorbance change and the ability to form zeaxanthin were completely blocked in leaves to which dithiothreitol (DTT) had been provided through the cut petlole. DTT treatment also caused strong inhibition of that component of the 535-nanometer absorbance change which is reversed in less than 4 minutes upon darkening and considered to be caused by increased light scattering. Moreover, DTT inhibited a large part of nonphotochemical quenching of chlorophyll fluorescence in the presence of excessive light. However, DTT had no detectable effect on the photon yield of photosynthesis measured under strictly rate-limiting photon flux densities or on the light-saturated photosynthetic capacity, at least in the short term. We conclude that it is possible to monitor light-induced violaxanthin de-epoxidation in green intact leaves by measurement of the absorbance change at 505 nanometers. Determination of absorbance changes in conjunction with measurements of photosynthesis in the presence and absence of DTT provide a system well suited for future studies of meachanisms of dissipation of excessive excitation energy in intact leaves.

4.
Arch Biochem Biophys ; 266(1): 219-26, 1988 Oct.
Article in English | MEDLINE | ID: mdl-3178225

ABSTRACT

A protein had been previously described, which was labeled by radioactive 5-aminolevulinic acid in isolated developing chloroplasts. In the present study we have shown that this protein (Mr approximately equal to 43,000) probably exists as a monomer in the chloroplast stroma. The labeling is blocked if known inhibitors of 5-aminolevulinic acid dehydratase are added to the incubation mixture, and is markedly decreased in intensity if nonradioactive 5-aminolevulinate or porphobilinogen are added to the incubation mixture; other intermediates in the porphyrin biosynthetic pathway, uroporphyrinogen III, uroporphyrin III, and protoporphyrin IX, do not decrease the labeling of the 43-kDa protein appreciably. Nondenaturing gels of the proteins isolated from the incubation with radioactive 5-aminolevulinic acid were stained for porphobilinogen deaminase activity. A series of red fluorescent bands was obtained which coincided with the radioactive bands visualized by autoradiography. It is concluded that the soluble chloroplast protein that is labeled in organello by radioactive 5-aminolevulinic acid is porphobilinogen deaminase.


Subject(s)
Aminolevulinic Acid/metabolism , Ammonia-Lyases/metabolism , Chloroplasts/metabolism , Hydroxymethylbilane Synthase/metabolism , Levulinic Acids/metabolism , Molecular Structure , Molecular Weight , Plants
5.
Plant Physiol ; 87: 894-7, 1988.
Article in English | MEDLINE | ID: mdl-11537879

ABSTRACT

Four aminopeptidases (APs) were separated using native polyacrylamide gel electrophoresis of cell-free extracts and the stromal fractions of isolated chloroplasts prepared from primary barley (Hordeum vulgare L., var Numar) leaves. Activities were identified using a series of aminoacyl-beta-naphthylamide derivatives as substrates. AP1, 2, and 3 were found in the stromal fraction of isolated chloroplasts with respective molecular masses of 66.7, 56.5, and 54.6 kilodaltons. AP4 was found only in the cytoplasmic fraction. No AP activity was found in vacuoles of these leaves. It was found that 50% of the L-Leu-beta-naphthylamide and 25% of the L-Arg-beta-naphthylamide activities were localized in the chloroplasts. Several AP activities were associated with the membranes of the thylakoid fraction of isolated chloroplasts. AP1, 2, and 4 reacted against a broad range of substrates, whereas AP3 hydrolyzed only L-Arg-beta-naphthylamide. Only AP2 hydrolyzed L-Val-beta-naphthylamide. Since AP2 and AP3 were the only ones reacting against Val-beta-naphthylamide and Arg-beta-naphthylamide, respectively, several protease inhibitors were tested against these substrates using a stromal fraction from isolated chloroplasts as the source of the two APs. Both APs were sensitive to both metallo and sulfhydryl type inhibitors. Although AP activity decreased as leaves senesced, no new APs appeared on gels during senescence and none disappeared.


Subject(s)
Aminopeptidases/metabolism , Chloroplasts/enzymology , Hordeum/enzymology , Plant Leaves/enzymology , Hordeum/cytology , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Plant Leaves/cytology , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Substrate Specificity
6.
Plant Physiol ; 75(1): 70-3, 1984 May.
Article in English | MEDLINE | ID: mdl-16663604

ABSTRACT

The localization of two previously characterized endoproteinases (EP(1) and EP(2)) that comprise more than 95% of the protease activity in primary Hordeum vulgare L. var Numar leaves was determined. Intact vacuoles released from washed mesophyll protoplasts by gentle osmotic shock and increase in pH, were purified by flotation through a four-step Ficoll gradient. These vacuoles contained endoproteinases that rapidly degraded purified barley ribulose-1,5-bisphosphate carboxylase (RuBPCase) substrate. Breakdown products and extent of digestion of RuBPCase were determined using 12% polyacrylamide-sodium dodecyl sulfate gels. Coomassie brilliant blue- or silver-stained gels were scanned, and the peaks were integrated to provide quantitative information. The characteristics of the vacuolar endoproteinases (e.g. sensitivity to various inhibitors and activators, and the molecular weights of the breakdown products, i.e. peptide maps) closely resembled those of purified EP(1) and partially purified EP(2). It is therefore concluded that EP(1) and EP(2) are localized in the vacuoles of mesophyll cells.

7.
Plant Physiol ; 70(6): 1732-7, 1982 Dec.
Article in English | MEDLINE | ID: mdl-16662753

ABSTRACT

Epidermal and mesophyll protoplasts, prepared from leaf blades of 6-day-old light-grown Sorghum bicolor seedlings were separated by differential sedimentation and assayed for a number of enzymes. The epidermal protoplasts contained higher levels of NADPH-cytochrome c reductase (EC 1.6.2.4), triose phosphate isomerase (EC 5.3.1.1), phosphoenolpyruvate carboxylase (EC 4.1.1.31), and a UDP-glucose:cyanohydrin beta-glucosyl transferase (EC 2.4.1.85), but lower levels of NADP(+) triosephosphate dehydrogenase (EC 1.2.1.13) than did mesophyll protoplasts. When protoplast preparations were lysed and applied to linear sucrose density gradients, triosephosphate isomerase was found to be present in epidermal plastids. A significant fraction (41%) of the glucosyl transferase activity was also associated with the epidermal plastids.

8.
Plant Physiol ; 67(4): 617-22, 1981 Apr.
Article in English | MEDLINE | ID: mdl-16661725

ABSTRACT

Studies with purified mesophyll and epidermal protoplasts and bundle sheath strands have shown that the cyanogenic glucoside dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside) is localized in the epidermis of sorghum leaves whereas the enzymes involved in its degradation (dhurrin beta-glucosidase and hydroxynitrile lyase) are localized in the mesophyll tissue (Kojima M, JE Poulton, SS Thayer, EE Conn 1979 Plant Physiol 63: 1022-1028). The subcellular localization of these enzymes has now been examined using linear 30 to 55% (w/w) sucrose gradients by fractionation of mesophyll protoplast components. The hydroxynitrile lyase is found in the supernatant fractions suggesting a cytoplasmic (soluble cytoplasm, microsomal or vacuolar location). The dhurrin beta-glucosidase (dhurrinase) is particulate and mostly chloroplast-associated. The dhurrinase activity peak has a shoulder of activity more dense than that of the intact chloroplasts. This shoulder does not coincide with markers of any other cell fraction.In studies of chloroplasts isolated from ruptured mesophyll protoplasts by differential, low-speed centrifugation, the dhurrinase partitions in the same manner as the chloroplast marker triose phosphate dehydrogenase. Chloroplast localization of the beta-glucosidase has also been shown in histochemical studies using 6-bromo-2-naphthyl-beta-d-glucoside substrate coupled with fast Blue B.

9.
Plant Physiol ; 63(6): 1022-8, 1979 Jun.
Article in English | MEDLINE | ID: mdl-16660850

ABSTRACT

The tissue distributions of dhurrin [p-hydroxy-(S)-mandelonitrile-beta-d-glucoside] and of enzymes involved in its metabolism have been investigated in leaf blades of light-grown Sorghum bicolor seedlings. Enzymic digestion of these leaves using cellulase has enabled preparations of epidermal and mesophyll protoplasts and bundle sheath strands to be isolated with only minor cross-contamination. Dhurrin was located entirely in the epidermal layers of the leaf blade, whereas the two enzymes responsible for its catabolism, namely dhurrin beta-glucosidase and hydroxynitrile lyase, resided almost exclusively in the mesophyll tissue. The final enzyme of dhurrin biosynthesis, uridine diphosphate glucose:p-hydroxymandelonitrile glucosyltransferase, was found in both mesophyll (32% of the total activity of the leaf blade) and epidermal (68%) tissues. The bundle sheath strands did not contain significant amounts of dhurrin or of these enzymes. It was concluded that the separation of dhurrin and its catabolic enzymes in different tissues prevents its large scale hydrolysis under normal physiological conditions. The well documented production of HCN (cyanogenesis), which occurs rapidly on crushing Sorghum leaves, would be expected to proceed when the contents of the ruptured epidermal and mesophyll cells are allowed to mix.

SELECTION OF CITATIONS
SEARCH DETAIL
...