Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Oper Dent ; 28(2): 193-9, 2003.
Article in English | MEDLINE | ID: mdl-12670076

ABSTRACT

High-strength dental stone is widely used to produce dies for the fabrication of restorations with the lost-wax technique. It is normal to wait at least 24 hours for casts to dry and gain sufficient strength prior to initiating laboratory procedures. This waiting time may be greatly reduced by using microwave drying. This study determined the optimum microwave energy density for preserving working die accuracy of a Type IV high-strength dental stone (Silky Rock; Whipmix). Cylindrical die specimens were fabricated according to manufacturer's instructions and allowed to set for one hour. The specimens were subsequently treated as follows: Group I (Control group)--air dried; Group II--microwaved at 700W for 40 seconds; Group III--microwaved at 490W for 60 seconds. The percentage weight loss of cylindrical specimens (n = 6) and the percentage dimensional change (n = 7) of die specimens in three axes (x, y and z) were determined at 30 minutes, 1 hour and 24 hours after air drying/microwaving. Weight loss was measured using an electronic digital balance, while dimensional changes were assessed using image analysis software. Data was subject to ANOVA/Scheffe's tests at significance level 0.05. No significant difference in percentage weight loss was observed between air drying for 24 hours and microwaved specimens at all time intervals. Although no significant difference in percentage dimensional changes was observed between specimens microwaved at 490W for 60 seconds and specimens air dried for 24 hours, significant changes in x, y and z dimensions were observed after microwaving at 700W for 40 seconds at various time intervals. Microwave radiation at 490W for 60 seconds is recommended for drying Type IV high-strength dental stone. Further investigations are required to determine changes in physical properties associated with the aforementioned microwave power density.


Subject(s)
Calcium Sulfate/radiation effects , Dental Casting Investment/radiation effects , Microwaves , Air , Analysis of Variance , Calcium Sulfate/chemistry , Dental Casting Investment/chemistry , Desiccation/methods , Electronics/instrumentation , Humans , Humidity , Image Processing, Computer-Assisted , Materials Testing , Pilot Projects , Statistics as Topic , Surface Properties , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...