Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798664

ABSTRACT

Sperm cryopreservation is important for individuals undergoing infertility treatment, and for those who wish to preserve fertility potential, prior to treatments like chemotherapy, radiation therapy, gender-affirming medical interventions, elective fertility delay, or individuals in high-risk professions such as the military. Current methods for sperm cryopreservation result in approximately 30-50% decrease in sperm motility. However, recent studies have shown that ultra-rapid freezing (vitrification) is a valuable approach for maintaining sperm quality after freeze-thawing processes in the clinical laboratory setting and requires submicroliter to microliter volumes. A major challenge for the adoption of vitrification in fertility laboratories is the ability to pipette small volumes of sample. Here, we present a method that leverages open-channel droplet microfluidics to autonomously generate sub-microliter to microliter volumes of purified human sperm samples. Using a novel, open-channel droplet generator, we found no change in sperm movement and kinematic data after exposure to device and reagents in our platform. We conclude that our platform is compatible with human sperm, an important foundation for future implementation of vitrification in fertility laboratories.

2.
Langmuir ; 40(13): 7215-7224, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38511962

ABSTRACT

The true value of the contact angle between a liquid and a solid is a thorny problem in capillary microfluidics. The Lucas-Washburn-Rideal (LWR) law assumes a constant contact angle during fluid penetration. However, recent experimental studies have shown lower liquid velocities than those predicted by the LWR equation, which are attributed to a velocity-dependent dynamic contact angle that is larger than its static value. Inspection of fluid penetration in closed channels has confirmed that a dynamic angle is needed in the LWR equation. In this work, the dynamic contact angle in an open-channel configuration is investigated using experimental data obtained with a range of liquids, aqueous and organic, and a PMMA substrate. We demonstrate that a dynamic contact angle must be used to explain the early stages of fluid penetration, i.e., at the start of the viscous regime, when flow velocities are sufficiently high. Moreover, the open-channel configuration, with its free surface, enhances the effect of the dynamic contact angle, making its inclusion even more important. We found that for the liquids in our study, the molecular-kinetic theory is the most accurate in predicting the effect of the dynamic contact angle on liquid penetration in open channels.

3.
medRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38168197

ABSTRACT

Importance: Obtaining high-quality samples to diagnose streptococcal pharyngitis in pediatric patients is challenging due to discomfort associated with traditional pharyngeal swabs. This may cause reluctance to go to the clinic, inaccurate diagnosis, or inappropriate treatment for children with sore throat. Objective: Determine the efficacy of using CandyCollect, a lollipop-inspired open-microfluidic pathogen collection device, to capture Group A Streptococcus (GAS) and compare user preference for CandyCollect, conventional pharyngeal swabs, or mouth swabs among children with pharyngitis and their caregivers. Design: Participants of this cohort study were recruited over a 7-month period in 2022 - 2023. Setting: This study was conducted at an ambulatory care clinic that serves pediatric patients in the Madison, Wisconsin, metropolitan area. Participants: Study participants were diagnosed with GAS pharyngitis using a traditional pharyngeal swab via rapid antigen detection test (RADT); those testing positive were approached or reached out to about participation in the study. A total of 74 caregiver/children dyads were contacted about the study: 23 declined to participate; 21 were not eligible; and 30 willing and eligible participants were admitted into the study. A caregiver provided verbal consent and parental permission, and all children provided verbal assent. Immediately after the standard of care visit in which the throat swab was obtained, a research nurse guided participants through collecting oral samples: CandyCollect device and mouth swab (ESwab TM ). CandyCollect and mouth swab samples were analyzed for GAS by quantitative polymerase chain reaction (qPCR) at the University of Washington. Exposure: Detection of salivary GAS using qPCR analysis of samples obtained from CandyCollect devices and mouth swabs. Main Outcomes and Measures: The proportion of pediatric patients with GAS pharyngitis, as determined by a positive pharyngeal swab tested via a RADT, who were also positive using a CandyCollect and mouth swab analyzed by qPCR. Results: All child participants (30/30) were positive for GAS by qPCR on both the mouth swab and CandyCollect. Caregivers ranked CandyCollect as a good sampling method overall (27/30), and all caregivers (30/30) would recommend the CandyCollect for children 5 years and older. Twenty-three of 30 children "really like" the taste and 24/30 would prefer to use the CandyCollect if a future test was needed. All caregivers (30/30) and most children (28/30) would be willing to use the CandyCollect device at home. Conclusion and relevance: All participants tested positive for GAS on all three collection methods (pharyngeal swab, mouth swab, and CandyCollect). While both caregivers and children like the CandyCollect device, some caregivers would prefer a shorter collection time. Future work includes additional studies with larger cohorts presenting with pharyngitis of unknown etiology and shortening collection time, while maintaining the attractive form of the device. Trial Registration: Registry name: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT05175196 Weblink: https://classic.clinicaltrials.gov/ct2/show/NCT05175196. Key Points: Question: In pediatric patients with Group A Streptococcus pharyngitis, how do test results and user experience compare across three sampling methods-CandyCollect devices, mouth swabs, and pharyngeal swabs?Findings: In this cohort study of 30 children, aged 5-14 years, saliva samples were collected with CandyCollect devices and mouth swabs and analyzed via qPCR. The results show CandyCollect, a pathogen collection tool preferred by children, had 100% concordance with the results from pharyngeal swabs positive with a rapid antigen detection test performed as part of their clinical care.Meaning: With further development and testing, the CandyCollect device may potentially become an alternative sampling tool for the diagnosis of streptococcal pharyngitis.

4.
bioRxiv ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-37163094

ABSTRACT

The true value of the contact angle between a liquid and a solid is a thorny problem in capillary microfluidics. The Lucas-Washburn-Rideal (LWR) law assumes a constant contact angle during fluid penetration. However, recent experimental studies have shown lower liquid velocities than predicted by the LWR equation, which are attributed to a velocity-dependent dynamic contact angle that is larger than its static value. Inspection of fluid penetration in closed channels has confirmed that a dynamic angle is needed in the LWR equation. In this work, the dynamic contact angle in an open channel configuration is investigated using experimental data obtained with a range of liquids, aqueous and organic, and a PMMA substrate. We demonstrate that a dynamic contact angle must be used to explain the early stages of fluid penetration, i.e., at the start of the viscous regime, when flow velocities are sufficiently high. Moreover, the open channel configuration, with its free surface, enhances the effect of the dynamic contact angle, making its inclusion even more important. We found that for the liquids in our study, the molecular-kinetic theory (MKT) is the most accurate in predicting the effect of the dynamic contact angle on liquid penetration in open channels.

5.
medRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37873251

ABSTRACT

Background: Early host immunity to acute respiratory infections (ARIs) is heterogenous, dynamic, and critical to an individual's infection outcome. Due to limitations in sampling frequency/timepoints, kinetics of early immune dynamics in natural human infections remain poorly understood. In this nationwide prospective cohort study, we leveraged a self-blood collection tool (homeRNA) to profile detailed kinetics of the pre-symptomatic to convalescence host immunity to contemporaneous respiratory pathogens. Methods: We enrolled non-symptomatic adults with recent exposure to ARIs who subsequently tested negative (exposed-uninfected) or positive for respiratory pathogens. Participants self-collected blood and nasal swabs daily for seven consecutive days followed by weekly blood collection for up to seven additional weeks. Symptom burden was assessed during each collection. Nasal swabs were tested for SARS-CoV-2 and common respiratory pathogens. 92 longitudinal blood samples spanning the pre-shedding to post-acute phase of eight SARS-CoV-2-infected participants and 40 interval-matched samples from four exposed-uninfected participants were subjected to high-frequency longitudinal profiling of 773 host immune genes. Findings: Between June 2021 - April 2022, 68 participants across 26 U.S. states completed the study and self-collected a total of 691 and 466 longitudinal blood and nasal swab samples along with 688 symptom surveys. SARS-CoV-2 was detected in 17 out of 22 individuals with study-confirmed respiratory infection. With rapid dissemination of home self-collection kits, two and four COVID-19+ participants started collection prior to viral shedding and symptom onset, respectively, enabling us to profile detailed expression kinetics of the earliest blood transcriptional response to contemporaneous variants of concern. In pre-shedding samples, we observed transient but robust expression of T-cell response signatures, transcription factor complexes, prostaglandin biosynthesis genes, pyrogenic cytokines, and cytotoxic granule genes. This is followed by a rapid induction of many interferon-stimulated genes (ISGs), concurrent to onset of viral shedding and increase in nasal viral load. Finally, we observed increased expression of host defense peptides (HDPs) in exposed-uninfected individuals over the 4-week observational window. Interpretation: We demonstrated that unsupervised self-collection and stabilization of capillary blood can be applied to natural infection studies to characterize detailed early host immune kinetics at a temporal resolution comparable to that of human challenge studies. The remote (decentralized) study framework enables conduct of large-scale population-wide longitudinal mechanistic studies. Expression of cytotoxic/T-cell signatures in pre-shedding samples preceding expansion of innate ISGs suggests a potential role for T-cell mediated pathogen control during early infection. Elevated expression of HDPs in exposed-uninfected individuals warrants further validation studies to assess their potential role in protective immunity during pathogen exposure. Funding: This study was funded by R35GM128648 to ABT for in-lab developments of homeRNA, Packard Fellowship from the David and Lucile Packard Foundation to ABT, and R01AI153087 to AW.

7.
Phys Fluids (1994) ; 35(8): 082120, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37675268

ABSTRACT

The search for efficient capillary pumping has led to two main directions for investigation: first, assembly of capillary channels to provide high capillary pressures, and second, imbibition in absorbing fibers or paper pads. In the case of open microfluidics (i.e., channels where the top boundary of the fluid is in contact with air instead of a solid wall), the coupling between capillary channels and paper pads unites the two approaches and provides enhanced capillary pumping. In this work, we investigate the coupling of capillary trees-networks of channels mimicking the branches of a tree-with paper pads placed at the extremities of the channels, mimicking the small capillary networks of leaves. It is shown that high velocities and flow rates (7 mm/s or 13.1 µl/s) for more than 30 s using 50% (v/v) isopropyl alcohol, which has a 3-fold increase in viscosity in comparison to water; 6.5 mm/s or 12.1 µl/s for more than 55 s with pentanol, which has a 3.75-fold increase in viscosity in comparison to water; and >3.5 mm/s or 6.5 µl/s for more than 150 s with nonanol, which has a 11-fold increase in viscosity in comparison to water, can be reached in the root channel, enabling higher sustained flow rates than that of capillary trees alone.

8.
Aging (Albany NY) ; 15(14): 6658-6689, 2023 07 23.
Article in English | MEDLINE | ID: mdl-37487005

ABSTRACT

The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1ß IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.


Subject(s)
Podocytes , Humans , Animals , Mice , Middle Aged , Podocytes/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney Glomerulus/metabolism , Aging
9.
Anal Chem ; 95(27): 10211-10220, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37364037

ABSTRACT

Respiratory infections are common in children, and there is a need for user-friendly collection methods. Here, we performed the first human subjects study using the CandyCollect device, a lollipop-inspired saliva collection device .We showed that the CandyCollect device can be used to collect salivary bacteria from healthy adults using Streptococcus mutans and Staphylococcus aureus as proof-of-concept commensal bacteria. We enrolled healthy adults in a nationwide (USA) remote study in which participants were sent study packages containing CandyCollect devices and traditional commercially available oral swabs and spit tubes. Participants sampled themselves at home, completed usability and user preference surveys, and mailed the samples back to our laboratory for analysis by qPCR. Our results showed that for participants in which a given bacterium (S. mutans or S. aureus) was detected in one or both of the commercially available methods (oral swab and/or spit tubes), CandyCollect devices had a 100% concordance with the positive result (n = 14 participants). Furthermore, the CandyCollect device was ranked the highest preference sampling method among the three sampling methods by 26 participants surveyed (combining survey results across two enrollment groups). We also showed that the CandyCollect device has a shelf life of up to 1 year at room temperature, a storage period that is convenient for clinics or patients to keep the CandyCollect device and use it any time. Taken together, we have demonstrated that the CandyCollect is a user-friendly saliva collection tool that has the potential to be incorporated into diagnostic assays in clinic visits and telemedicine.


Subject(s)
Saliva , Staphylococcus aureus , Child , Humans , Adult , Saliva/microbiology , Specimen Handling/methods , Streptococcus mutans , Laboratories
10.
medRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-37034678

ABSTRACT

Blood transcriptional profiling is a powerful tool to evaluate immune responses to infection; however, blood collection via traditional phlebotomy remains a barrier to precise characterization of the immune response in dynamic infections (e.g., respiratory viruses). Here we present an at-home self-collection methodology, homeRNA, to study the host transcriptional response during acute SARS-CoV-2 infections. This method uniquely enables high frequency measurement of the host immune kinetics in non-hospitalized adults during the acute and most dynamic stage of their infection. COVID-19+ and healthy participants self-collected blood every other day for two weeks with daily nasal swabs and symptom surveys to track viral load kinetics and symptom burden, respectively. While healthy uninfected participants showed remarkably stable immune kinetics with no significant dynamic genes, COVID-19+ participants, on the contrary, depicted a robust response with over 418 dynamic genes associated with interferon and innate viral defense pathways. When stratified by vaccination status, we detected distinct response signatures between unvaccinated and breakthrough (vaccinated) infection subgroups; unvaccinated individuals portrayed a response repertoire characterized by higher innate antiviral responses, interferon signaling, and cytotoxic lymphocyte responses while breakthrough infections portrayed lower levels of interferon signaling and enhanced early cell-mediated response. Leveraging cross-platform longitudinal sampling (nasal swabs and blood), we observed that IFI27, a key viral response gene, tracked closely with SARS-CoV-2 viral clearance in individual participants. Taken together, these results demonstrate that at-home sampling can capture key host antiviral responses and facilitate frequent longitudinal sampling to detect transient host immune kinetics during dynamic immune states.

11.
Nat Rev Chem ; 7(6): 439-455, 2023 06.
Article in English | MEDLINE | ID: mdl-37117816

ABSTRACT

Open droplet microfluidic systems manipulate droplets on the picolitre-to-microlitre scale in an open environment. They combine the compartmentalization and control offered by traditional droplet-based microfluidics with the accessibility and ease-of-use of open microfluidics, bringing unique advantages to applications such as combinatorial reactions, droplet analysis and cell culture. Open systems provide direct access to droplets and allow on-demand droplet manipulation within the system without needing pumps or tubes, which makes the systems accessible to biologists without sophisticated setups. Furthermore, these systems can be produced with simple manufacturing and assembly steps that allow for manufacturing at scale and the translation of the method into clinical research. This Review introduces the different types of open droplet microfluidic system, presents the physical concepts leveraged by these systems and highlights key applications.


Subject(s)
Biology , Microfluidics , Microfluidics/methods
12.
Adv Mater ; 35(19): e2209904, 2023 May.
Article in English | MEDLINE | ID: mdl-36808641

ABSTRACT

Stimuli-responsive biomaterials show great promise for modeling disease dynamics ex vivo with spatiotemporal control over the cellular microenvironment. However, harvesting cells from such materials for downstream analysis without perturbing their state remains an outstanding challenge in 3/4-dimensional (3D/4D) culture and tissue engineering. In this manuscript, a fully enzymatic strategy for hydrogel degradation that affords spatiotemporal control over cell release while maintaining cytocompatibility is introduced. Exploiting engineered variants of the sortase transpeptidase evolved to recognize and selectively cleave distinct peptide sequences largely absent from the mammalian proteome, many limitations implicit to state-of-the-art methods to liberate cells from gels are sidestepped. It is demonstrated that evolved sortase exposure has minimal impact on the global transcriptome of primary mammalian cells and that proteolytic cleavage proceeds with high specificity; incorporation of substrate sequences within hydrogel crosslinkers permits rapid and selective cell recovery with high viability. In composite multimaterial hydrogels, it is shown that sequential degradation of hydrogel layers enables highly specific retrieval of single-cell suspensions for phenotypic analysis. It is expected that the high bioorthogonality and substrate selectivity of the evolved sortases will lead to their broad adoption as an enzymatic material dissociation cue and that their multiplexed use will enable newfound studies in 4D cell culture.


Subject(s)
Biocompatible Materials , Peptidyl Transferases , Animals , Peptides , Hydrogels , Tissue Engineering/methods , Mammals
13.
bioRxiv ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-36711895

ABSTRACT

Respiratory infections are common in children, and there is a need for user-friendly collection methods. Here, we performed the first human subjects study using the CandyCollect device, a lollipop inspired saliva collection device. 1 We showed the CandyCollect device can be used to collect salivary bacteria from healthy adults using Streptococcus mutans and Staphylococcus aureus as proof-of-concept commensal bacteria. We enrolled healthy adults in a nationwide (USA) remote study in which participants were sent study packages containing CandyCollect devices and traditional commercially available oral swabs and spit tubes. Participants sampled themselves at home, completed usability and user preference surveys, and mailed the samples back to our laboratory for analysis by qPCR. Our results showed that for participants in which a given bacterium ( S. mutans or S. aureus ) was detected in one or both of the commercially available methods (oral swab and/or spit tubes), CandyCollect devices had a 100% concordance with the positive result (n=14 participants). Furthermore, the CandyCollect device was ranked the highest preference sampling method among the three sampling methods by 26 participants surveyed (combining survey results across two enrollment groups). We also showed that the CandyCollect device has a shelf life of up to 1 year at room temperature, a storage period that is convenient for clinics or patients to keep the CandyCollect device and use it any time. Taken together, we have demonstrated that the CandyCollect is a user-friendly saliva collection tool that has the potential to be incorporated into diagnostic assays in clinic visits and telemedicine.

14.
Front Bioeng Biotechnol ; 10: 993872, 2022.
Article in English | MEDLINE | ID: mdl-36246374

ABSTRACT

Interactions between fibroblasts and immune cells play an important role in tissue inflammation. Previous studies have found that eosinophils activated with interleukin-3 (IL-3) degranulate on aggregated immunoglobulin G (IgG) and release mediators that activate fibroblasts in the lung. However, these studies were done with eosinophil-conditioned media that have the capacity to investigate only one-way signaling from eosinophils to fibroblasts. Here, we demonstrate a coculture model of primary normal human lung fibroblasts (HLFs) and human blood eosinophils from patients with allergy and asthma using an open microfluidic coculture device. In our device, the two types of cells can communicate via two-way soluble factor signaling in the shared media while being physically separated by a half wall. Initially, we assessed the level of eosinophil degranulation by their release of eosinophil-derived neurotoxin (EDN). Next, we analyzed the inflammation-associated genes and soluble factors using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and multiplex immunoassays, respectively. Our results suggest an induction of a proinflammatory fibroblast phenotype of HLFs following the coculture with degranulating eosinophils, validating our previous findings. Additionally, we present a new result that indicate potential impacts of activated HLFs back on eosinophils. This open microfluidic coculture platform provides unique opportunities to investigate the intercellular signaling between the two cell types and their roles in airway inflammation and remodeling.

15.
Lab Chip ; 22(18): 3555-3564, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35983761

ABSTRACT

Streptococcus pyogenes is a major human-specific bacterial pathogen and a common cause of a wide range of symptoms from mild infection such as pharyngitis (commonly called strep throat) to life-threatening invasive infection and post-infectious sequelae. Traditional methods for diagnosis include collecting a sample using a pharyngeal swab, which can cause discomfort and even discourage adults and children from seeking proper testing and treatment in the clinic. Saliva samples are an alternative to pharyngeal swabs. To improve the testing experience for strep throat, we developed a novel lollipop-inspired sampling platform (called CandyCollect) to capture bacteria in saliva. The device can be used in clinics or in the home and shipped back to a lab for analysis, integrating with telemedicine. CandyCollect is designed to capture bacteria on an oxygen plasma treated polystyrene surface embedded with flavoring substances to enhance the experience for children and inform the required time to complete the sampling process. In addition, the open channel structure prevents the tongue from scraping and removing the captured bacteria. The flavoring substances did not affect bacterial capture and the device has a shelf life of at least 2 months (with experiments ongoing to extend the shelf life). We performed a usability study with 17 participants who provided feedback on the device design and the dissolving time of the candy. This technology and advanced processing techniques, including polymerase chain reaction (PCR), will enable user-friendly and effective diagnosis of streptococcal pharyngitis.


Subject(s)
Pharyngitis , Streptococcal Infections , Adult , Child , Humans , Pharyngitis/diagnosis , Pharyngitis/microbiology , Polymerase Chain Reaction , Saliva , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Streptococcus pyogenes/genetics
16.
SLAS Technol ; 27(6): 344-349, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35970321

ABSTRACT

Lumen structures exist throughout the human body, and the vessels of the circulatory system are essential for carrying nutrients and oxygen and regulating inflammation. Vasodilation, the widening of the blood vessel lumen, is important to the immune response as it increases blood flow to a site of inflammation, raises local temperature, and enables optimal immune system function. A common method for studying vasodilation uses excised vessels from animals; major drawbacks include heterogeneity in vessel shape and size, time-consuming procedures, sacrificing animals, and differences between animal and human biology. We have developed a simple, user-friendly in vitro method to form freestanding cell-laden hydrogel rings from collagen and quantitatively measure the effects of vasodilators on ring size. The hydrogel rings are composed of collagen I and can be laden with human vascular smooth muscle cells, a major cellular and structural component of blood vessels, or lined with endothelial cells in the lumen. The methods presented include a 3D printed device (which is amenable to future fabrication by injection molding) and commercially available components (e.g., Teflon tubing or a syringe) to form hydrogel rings between 2.6-4.6 mm outer diameter and 0.79-1.0 mm inner diameter. Here we demonstrate a significant difference in ring area in the presence of a known vasodilator, fasudil (p < 0.0001). Our method is easy to implement and provides a foundation for a medium-throughput solution to generating vessel model structures for future investigations of the fundamental mechanisms of vasodilation (e.g., studying uncharacterized endogenous molecules that may have vasoactivity) and testing vasoactive drugs.


Subject(s)
Endothelial Cells , Hydrogels , Animals , Humans , Hydrogels/chemistry , Human Body , Collagen/chemistry , Injections
17.
Front Digit Health ; 4: 903153, 2022.
Article in English | MEDLINE | ID: mdl-36033636

ABSTRACT

Expanding whole blood sample collection for transcriptome analysis beyond traditional phlebotomy clinics will open new frontiers for remote immune research and telemedicine. Determining the stability of RNA in blood samples exposed to high ambient temperatures (>30°C) is necessary for deploying home-sampling in settings with elevated temperatures (e.g., studying physiological response to natural disasters that occur in warm locations or in the summer). Recently, we have developed homeRNA, a technology that allows for self-blood sampling and RNA stabilization remotely. homeRNA consists of a lancet-based blood collection device, the Tasso-SST™ which collects up to 0.5 ml of blood from the upper arm, and a custom-built stabilization transfer tube containing RNAlater™. In this study, we investigated the robustness of our homeRNA kit in high temperature settings via two small pilot studies in Doha, Qatar (no. participants = 8), and the Western and South Central USA during the summer of 2021, which included a heatwave of unusually high temperatures in some locations (no. participants = 11). Samples collected from participants in Doha were subjected to rapid external temperature fluctuations from being moved to and from air-conditioned areas and extreme heat environments (up to 41°C external temperature during brief temperature spikes). In the USA pilot study, regions varied in outdoor temperature highs (between 25°C and 43.4°C). All samples that returned a RNA integrity number (RIN) value from the Doha, Qatar group had a RIN ≥7.0, a typical integrity threshold for downstream transcriptomics analysis. RIN values for the Western and South Central USA samples (n = 12 samples) ranged from 6.9-8.7 with 9 out of 12 samples reporting RINs ≥7.0. Overall, our pilot data suggest that homeRNA can be used in some regions that experience elevated temperatures, opening up new geographical frontiers in disseminated transcriptome analysis for applications critical to telemedicine, global health, and expanded clinical research. Further studies, including our ongoing work in Qatar, USA, and Thailand, will continue to test the robustness of homeRNA.

18.
Anal Chem ; 93(39): 13196-13203, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34546711

ABSTRACT

Gene expression analysis (e.g., targeted gene panels and transcriptomics) from whole blood can elucidate mechanisms of the immune function and aid in the discovery of biomarkers. Conventional venipuncture offers only a small snapshot of our broad immune landscape as immune responses may occur outside of the time and location parameters available for conventional venipuncture. A self-operated method that enables flexible sampling of liquid whole blood coupled with immediate stabilization of cellular RNA is instrumental in facilitating capture and preservation of acute or transient immune fluxes. To this end, we developed homeRNA, a kit for self-collection of peripheral blood (∼0.5 mL) and immediate stabilization of cellular RNA, using the Tasso-SST blood collection device with a specially designed stabilizer tube containing RNAlater. To assess the feasibility of homeRNA for self-collection and stabilization of whole blood RNA, we conducted a pilot study (n = 47 participants) in which we sent homeRNA to participants aged 21-69, located across 10 US states (94% successful blood collections, n = 61/65). Among participants who successfully collected blood, 93% reported no or minimal pain/discomfort using the kit (n = 39/42), and 79% reported very easy/somewhat easy stabilization protocol (n = 33/42). Total RNA yield from the stabilized samples ranged between 0.20 and 5.99 µg (mean = 1.51 µg), and all but one RNA integrity number values were above 7.0 (mean = 8.1), indicating limited RNA degradation. The results from this study demonstrate the self-collection and RNA stabilization of whole blood with homeRNA by participants themselves in their own home.


Subject(s)
RNA , Humans , Pilot Projects
19.
Anal Chem ; 93(33): 11433-11441, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34379402

ABSTRACT

Aerosols dispersed and transmitted through the air (e.g., particulate matter pollution and bioaerosols) are ubiquitous and one of the leading causes of adverse health effects and disease transmission. A variety of sampling methods (e.g., filters, cyclones, and impactors) have been developed to assess personal exposures. However, a gap still remains in the accessibility and ease-of-use of these technologies for people without experience or training in collecting airborne samples. Additionally, wet scrubbers (large non-portable industrial systems) utilize liquid sprays to remove aerosols from the air; the goal is to "scrub" (i.e., clean) the exhaust of industrial smokestacks, not collect the aerosols for analysis. Inspired by wet scrubbers, we developed a device fundamentally different from existing portable air samplers by using aerosolized microdroplets to capture aerosols in personal spaces (e.g., homes, offices, and schools). Our aerosol-sampling device is the size of a small teapot, can be operated without specialized training, and features a winding flow path in a supersaturated relative humidity environment, enabling droplet growth. The integrated open mesofluidic channels shuttle coalesced droplets to a collection chamber for subsequent sample analysis. Here, we present the experimental demonstration of aerosol capture in water droplets. An iterative study optimized the non-linear flow manipulating baffles and enabled an 83% retention of the aerosolized microdroplets in the confined volume of our device. As a proof-of-concept for aerosol capture into a liquid medium, 0.5-3 µm model particles were used to evaluate aerosol capture efficiency. Finally, we demonstrate that the device can capture and keep a bioaerosol (bacteriophage MS2) viable for downstream analysis.


Subject(s)
Levivirus , Particulate Matter , Aerosols/analysis , Air Microbiology , Environmental Monitoring , Humans , Particle Size
20.
Nature ; 595(7865): 31-32, 2021 07.
Article in English | MEDLINE | ID: mdl-34194015
SELECTION OF CITATIONS
SEARCH DETAIL
...