Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 577: 319-328, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32497917

ABSTRACT

A fast, simple, instrument-free room temperature synthesis of stable electroactive surfactant-free colloidal Pt nanoparticles in alkaline methanol and methanol-water mixtures is presented. Pair distribution function (PDF) analysis suggests that methoxy substitution of chloride ligands from H2PtCl6 occurs in methanol. X-ray absorption spectroscopy (XAS) studies and UV-vis measurements show that solutions of H2PtCl6 in methanol age and are reduced to Pt(II) species over time. These species are ideal precursors to significantly reduce the induction period typically observed in colloidal Pt nanoparticle syntheses as well as the temperature needed to form nanoparticles. The room temperature synthesis presented here allows designing simple in situ studies of the nanoparticle formation. In situ infra-red spectroscopy gives insight into the formation and stabilization mechanism of surfactant-free nanoparticles by CO surface groups. Finally, the surfactant-free nanoparticles ca. 2-3 nm in diameter obtained are shown to be readily active electrocatalysts e.g. for methanol oxidation. The synthesis approach presented bears several advantages to design new studies and new syntheses of surfactant-free colloidal nanomaterials.

2.
Rev Sci Instrum ; 84(7): 073701, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23902070

ABSTRACT

To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface potential. The improved CAHT-SPM, therefore, holds a great potential for local sub-micron analysis of high-temperature and gas induced changes of a wide range of materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...