Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 90(3): 1228-1241, 2023 09.
Article in English | MEDLINE | ID: mdl-37145035

ABSTRACT

PURPOSE: To design and implement a multi-coil (MC) array for B0 field generation for image encoding and simultaneous advanced shimming in a novel 1.5T head-only MRI scanner. METHODS: A 31-channel MC array was designed following the unique constraints of this scanner design: The vertically oriented magnet is very short, stopping shortly above the shoulders of a sitting subject, and includes a window for the subject to see through. Key characteristics of the MC hardware, the B0 field generation capabilities, and thermal behavior, were optimized in simulations prior to its construction. The unit was characterized via bench testing. B0 field generation capabilities were validated on a human 4T MR scanner by analysis of experimental B0 fields and by comparing images for several MRI sequences acquired with the MC array to those acquired with the system's linear gradients. RESULTS: The MC system was designed to produce a multitude of linear and nonlinear magnetic fields including linear gradients of up to 10 kHz/cm (23.5 mT/m) with MC currents of 5 A per channel. With water cooling it can be driven with a duty cycle of up to 74% and ramp times of 500 µs. MR imaging experiments encoded with the developed multi-coil hardware were largely artifact-free; residual imperfections were predictable, and correctable. CONCLUSION: The presented compact multi-coil array is capable of generating image encoding fields with amplitudes and quality comparable to clinical systems at very high duty cycles, while additionally enabling high-order B0 shimming capabilities and the potential for nonlinear encoding fields.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Magnetic Fields , Artifacts
2.
NMR Biomed ; 35(8): e4739, 2022 08.
Article in English | MEDLINE | ID: mdl-35393706

ABSTRACT

B0 inhomogeneity leads to imaging artifacts in cardiac magnetic resonance imaging (MRI), in particular dark band artifacts with steady-state free precession pulse sequences. The limited spatial resolution of MR-derived in vivo B0 maps and the lack of population data prevent systematic analysis of the problem at hand and the development of optimized B0 shim strategies. We used readily available clinical computed tomography (CT) images to simulate the B0 conditions in the human heart at high spatial resolution. Calculated B0 fields showed consistency with MRI-based B0 measurements. The B0 maps for both the simulations and in vivo measurements showed local field inhomogeneities in the vicinity of lung tips with dominant Z3 spherical harmonic terms in the field distribution. The presented simulation approach allows for the derivation of B0 field conditions at high spatial resolution from CT images and enables the development of subject- and population-specific B0 shim strategies for the human heart.


Subject(s)
Brain , Magnetic Resonance Imaging , Artifacts , Heart/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed
3.
Magn Reson Med ; 85(2): 831-844, 2021 02.
Article in English | MEDLINE | ID: mdl-32892400

ABSTRACT

PURPOSE: We demonstrate the feasibility of MRI with missing-pulse steady-state free precession (MP-SSFP) in a 4T magnet with artificially degraded homogeneity. METHODS: T1 , T2 , and diffusion contrast of MP-SSFP was simulated with constant and alternate radiofrequency (RF) phase using an extended phase graph. To validate MP-SSFP performance in human brain imaging, MP-SSFP was tested with two types of artificially introduced inhomogeneous magnetic fields: (1) a pure linear gradient field, and (2) a pseudo-linear gradient field introduced by mounting a head-gradient set at 36 cm from the magnet isocenter. Image distortion induced by the nonlinear inhomogeneous field was corrected using B0 mapping measured with MP-SSFP. RESULTS: The maximum flip angle in MP-SSFP was limited to ≤10° because of the large range of resonance frequencies in the inhomogeneous magnetic fields tested in this study. Under this flip-angle limitation, MP-SSFP with constant RF phase provided advantages of higher signal-to-noise ratio and insensitivity to B1+ field inhomogeneity as compared with an alternate RF phase. In diffusion simulation, the steady-state magnetization in constant RF phase MP-SSFP increased with an increase of static field gradient up to 8 to 21 mT/m depending on simulation parameters. Experimental results at 4T validated these findings. In human brain imaging, MP-SSFP preserved sufficient signal intensities, but images showed severe image distortion from the pseudo-linear inhomogeneous field. However, following distortion correction, good-quality brain images were achieved. CONCLUSION: MP-SSFP appears to be a feasible MRI technique for brain imaging in an inhomogeneous magnetic field.


Subject(s)
Magnetic Fields , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Radio Waves , Signal-To-Noise Ratio
4.
Magn Reson Med ; 84(6): 2953-2963, 2020 12.
Article in English | MEDLINE | ID: mdl-32544274

ABSTRACT

PURPOSE: Spatial encoding for MRI is generally based on linear x, y, and z magnetic field gradients generated by a set of dedicated gradient coils. We recently introduced the dynamic multicoil technique (DYNAMITE) for B0 field control and demonstrated DYNAMITE MRI in a preclinical MR environment. In this study, we report the first realization of DYNAMITE MRI of the in vivo human head. METHODS: Gradient fields for DYNAMITE MRI were generated with a 28-channel multicoil hardware arranged in 4 rows of 7 coils on a cylindrical surface (length 359 mm, diameter 344 mm, maximum 5 A per coil). DYNAMITE MRIs of a resolution phantom and in vivo human heads were acquired with multislice gradient-echo, multislice spin-echo, and 3D gradient-echo sequences. The resultant image fidelity was compared to that obtained with conventional gradient coil technology. RESULTS: DYNAMITE field control enabled the realization of all imaging sequences with average gradient errors ≤ 1%. DYNAMITE MRI provided image quality and sensitivity comparable to conventional gradient technology without any obvious artifacts. Some minor geometric deformations were noticed primarily in the image periphery as the result of regional field imperfections. The imperfections can be readily approximated theoretically through numerical integration of the Biot-Savart law and removed through image distortion correction. CONCLUSION: The first realization of DYNAMITE MRI of the in vivo human head has been presented. The obtained image fidelity is comparable to MRI with conventional gradient coils, paving the way for full-fledged DYNAMITE MRI and B0 shim systems for human applications.


Subject(s)
Brain , Magnetic Resonance Imaging , Artifacts , Brain/diagnostic imaging , Humans , Magnetic Fields , Phantoms, Imaging
5.
Magn Reson Med ; 78(3): 930-940, 2017 09.
Article in English | MEDLINE | ID: mdl-27699841

ABSTRACT

PURPOSE: It is well known that pathological changes in tissue alter its mechanical properties. This holds also true for brain tissue. In case of the brain, however, obtaining information about these properties is hard due to the surrounding cranial bone. In this paper a novel technique to create an imaging contrast based on the aforementioned properties is presented. METHODS: The method is based on an excitation of the brain induced by a short fall. The response of the brain tissue is measured using a motion sensitive MRI sequence. RESULTS: The new method is tested by measurements on phantom material as well as on healthy volunteers. In a proof of principle experiment the capability of the approach to identify local alterations in the mechanical properties is shown by means of measurements on meningioma patients. CONCLUSION: The presented results show the feasibility of the novel method. Even in this early state of the proposed method, comparisons of measurements on meningioma patients with intraoperative palpation suggest that meningioma tissue responds differently to the excitation depending on their mechanical properties. Magn Reson Med 78:930-940, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Brain/physiology , Brain Neoplasms/physiopathology , Female , Humans , Male , Phantoms, Imaging , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...