Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 298(2): 167-85, 2000 Apr 28.
Article in English | MEDLINE | ID: mdl-10764589

ABSTRACT

Programmed -1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide "slippery sequence" conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level ( approximately 1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed -1 ribosomal frameshifting.


Subject(s)
Frameshifting, Ribosomal/genetics , Nucleic Acid Conformation , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Base Sequence , Cations/metabolism , Cations/pharmacology , Infectious bronchitis virus/genetics , Luteovirus/genetics , Mammary Tumor Virus, Mouse/genetics , Models, Genetic , Nucleic Acid Conformation/drug effects , RNA Stability/drug effects , RNA, Messenger/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Retroviruses, Simian/genetics
2.
RNA ; 6(3): 409-21, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10744025

ABSTRACT

The mouse mammary tumor virus (MMTV) gag-pro frameshifting pseudoknot is an H-type RNA pseudoknot that contains an unpaired adenosine (A14) at the junction of the two helical stems required for efficient frameshifting activity. The thermodynamics of folding of the MMTV vpk pseudoknot have been compared with a structurally homologous mutant RNA containing a G x U to G-C substitution at the helical junction (U13C RNA), and an A14 deletion mutation in that context (U13CdeltaA14 RNA). Dual wavelength optical melting and differential scanning calorimetry reveal that the unpaired adenosine contributes 0.7 (+/-0.2) kcal mol(-1) at low salt and 1.4 (+/-0.2) kcal mol(-1) to the stability (deltaG(0)37) at 1 M NaCl. This stability increment derives from a favorable enthalpy contribution to the stability deltadeltaH = 6.6 (+/-2.1) kcal mol(-1) with deltadeltaG(0)37 comparable to that predicted for the stacking of a dangling 3' unpaired adenosine on a G-C or G x U base pair. Group 1A monovalent ions, NH4+, Mg2+, and Co(NH3)6(3+) ions stabilize the A14 and deltaA14 pseudoknots to largely identical extents, revealing that the observed differences in stability in these molecules do not derive from a differential or specific accumulation of ions in the A14 versus deltaA14 pseudoknots. Knowledge of this free energy contribution may facilitate the prediction of RNA pseudoknot formation from primary nucleotide sequence (Gultyaev et al., 1999, RNA 5:609-617).


Subject(s)
Adenosine/physiology , Frameshifting, Ribosomal , Genes, gag/genetics , Genes, pol/genetics , Mammary Tumor Virus, Mouse/physiology , Nucleic Acid Conformation , RNA Stability/physiology , Adenosine/metabolism , Animals , Base Sequence , Calorimetry, Differential Scanning , Cations/pharmacology , Cations, Divalent/pharmacology , Hot Temperature , Intercalating Agents/metabolism , Metals/pharmacology , Mice , Molecular Sequence Data , Nucleic Acid Denaturation , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA, Viral/physiology , Retroviridae Infections/metabolism , Tumor Virus Infections/metabolism
3.
Biopolymers ; 50(4): 443-58, 1999 Oct 05.
Article in English | MEDLINE | ID: mdl-10423552

ABSTRACT

Equilibrium unfolding (folding) studies reveal that the autoregulatory RNA pseudoknots derived from the bacteriophage T2 and T4 gene 32 mRNAs exhibit significant stabilization by increasing concentrations of divalent metal ions in solution. In this report, the apparent affinities of exchange inert trivalent Co(NH(3))(3+)(6) have been determined, relative to divalent Mg(2+), for the folded, partially folded (K(f)), and fully unfolded (K(u)) conformations of these molecules. A general nonspecific, delocalized ion binding model was developed and applied to the analysis of the metal ion concentration dependence of individual two-state unfolding transitions. Trivalent Co(NH(3))(3+)(6) was found to associate with the fully folded and partially unfolded pseudoknotted forms of these RNAs with a K(f) of 5-8 x 10(4) M(-1) in a background of 0.10 M K(+), or 3- to 5-fold larger than the K(f) obtained for two model RNA hairpins and hairpin unfolding intermediates, and approximately 40-50-fold larger than K(f) for Mg(2+). The magnitude of K(f) was found to be strongly dependent on the monovalent salt concentration in a manner qualitatively consistent with polyelectrolyte theory, with K(f) reaching 1.2 x 10(5) M(-1) in 50 mM K(+). Two RNA hairpins were found to have affinities for Co(NH(3))(3+)(6) and Ru(NH(3))(3+)(6) of 1-2 x10(4) M(-1), or approximately 15-fold larger than the K(f) of approximately 1000 M(-1) observed for Mg(2+). Additionally, the K(u) of 4,800 M(-1) for the trivalent ligands is approximately 8-fold larger than the K(u) of 600 M(-1) observed for Mg(2+). These findings suggest that the T2 and T4 gene 32 mRNA pseudoknots possess a site(s) for Mg(2+) and Co(NH(3))(3+)(6) binding of significantly higher affinity than a "duplexlike" delocalized ion binding site that is strongly linked to the thermodynamic stability of these molecules. Imino proton perturbation nmr spectroscopy suggests that this site(s) lies near the base of the pseudoknot stem S2, near a patch of high negative electrostatic potential associated with the region where the single loop L1 adenosine crosses the major groove of stem S2.


Subject(s)
Cobalt/chemistry , Nucleic Acid Conformation , RNA/chemistry , Thermodynamics , Base Sequence , Molecular Sequence Data
4.
J Mol Biol ; 289(5): 1283-99, 1999 Jun 25.
Article in English | MEDLINE | ID: mdl-10373368

ABSTRACT

The equilibrium unfolding pathway of a 41-nucleotide frameshifting RNA pseudoknot from the gag-pro junction of mouse intracisternal A-type particles (mIAP), an endogenous retrovirus, has been determined through analysis of dual optical wavelength, equilibrium thermal melting profiles and differential scanning calorimetry. The mIAP pseudoknot is an H-type pseudoknot proposed to have structural features in common with the gag-pro frameshifting pseudoknots from simian retrovirus-1 (SRV-1) and mouse mammary tumor virus (MMTV). In particular, the mIAP pseudoknot is proposed to contain an unpaired adenosine base at the junction of the two helical stems (A15), as well as one in the middle of stem 2 (A35). A mutational analysis of stem 1 hairpins and compensatory base-pair substitutions incorporated into helical stem 2 was used to assign optical melting transitions to molecular unfolding events. The optical melting profile of the wild-type RNA is most simply described by four sequential two-state unfolding transitions. Stem 2 melts first in two closely coupled low-enthalpy transitions at low tmin which the stem 3' to A35, unfolds first, followed by unfolding of the remainder of the helical stem. The third unfolding transition is associated with some type of stacking interactions in the stem 1 hairpin loop not present in the pseudoknot. The fourth transition is assigned to unfolding of stem 1. In all RNAs investigated, DeltaHvH approximately DeltaHcal, suggesting that DeltaCpfor unfolding is small. A35 has the thermodynamic properties expected for an extrahelical, unpaired nucleotide. Deletion of A15 destabilizes the stem 2 unfolding transition in the context of both the wild-type and DeltaA35 mutant RNAs only slightly, by DeltaDeltaG degrees approximately 1 kcal mol-1(at 37 degrees C). The DeltaA15 RNA is considerably more susceptible to thermal denaturation in the presence of moderate urea concentrations than is the wild-type RNA, further evidence of a detectable global destabilization of the molecule. Interestingly, substitution of the nine loop 2 nucleotides with uridine residues induces a more pronounced destabilization of the molecule (DeltaDeltaG degrees approximately 2.0 kcal mol-1), a long-range, non-nearest neighbor effect. These findings provide the thermodynamic basis with which to further refine the relationship between efficient ribosomal frameshifting and pseudoknot structure and stability.


Subject(s)
Endogenous Retroviruses/genetics , Frameshifting, Ribosomal , Genes, Intracisternal A-Particle , RNA, Viral , Adenosine , Animals , Calorimetry , Magnesium , Mice , Mutagenesis , Thermodynamics
5.
J Mol Biol ; 279(3): 545-64, 1998 Jun 12.
Article in English | MEDLINE | ID: mdl-9641977

ABSTRACT

The upstream autoregulatory mRNA leader sequence of gene 32 of 17 T-even and related bacteriophages folds into a simple tertiary structural motif, a hairpin-type RNA pseudoknot. In phage T4, the pseudoknot is contained within 28 contiguous nucleotides which adopt a pseudocontinuous helical structure derived from two coaxially stacked helical stems of four (stem 1) and seven (stem 2) base-pairs connected by two inequivalent single-stranded loops of five and one nucleotide(s). These two loops cross the minor and major grooves of stems 1 and 2, respectively. In this study, the equilibrium unfolding pathway of a 35-nucleotide RNA fragment corresponding to the wild-type and sequence variants of the T4 gene 32 mRNA has been determined through analysis of dual-wave-length, equilibrium thermal melting profiles via application of a van't Hoff model based on multiple sequential, two-state transitions. The melting profile of the wild-type RNA is well-described by two sequential melting transitions over a wide range of magnesium concentration. Compensatory base-pair substitutions incorporated into helical stems 1 and 2 were used to assign the first low enthalpy, moderate tm melting transition to the denaturation of the short three to four base-pair stem 1, followed by unfolding of the larger seven base-pair stem 2. We find that loop 1 substitution mutants (A10 to G10, C10, U10 or GA10) strikingly uncouple the melting of stems 1 and 2, with the U10 substitution and the GA10 loop expansion more destabilizing than the G10 and C10 substitutions. A significant increase in the extent of cleavage by RNase T1 following the conserved G26 (the 3' nucleotide in loop 2) in the U10, G10, and GA10 mutants suggests that an altered helix-helix junction region in this mutant may be responsible, at least in part, for this uncoupling. In addition to a modest destabilization of stem 2, the major effect of deletion or nucleotide substitution in the 3' single-stranded tail is a destabilization of stem 1, a non-nearest neighbor tertiary structural effect, which may well be transmitted through an altered loop 1-core helix interaction. In contrast, truncation of the 5' tail has no effect on the stability of the molecule.


Subject(s)
Nucleic Acid Conformation , RNA, Messenger/chemistry , T-Phages/genetics , Base Sequence , Genes, Viral/genetics , Magnesium/pharmacology , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutation/genetics , Nucleic Acid Denaturation , Ribonuclease T1/metabolism , Sequence Alignment , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...