Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Appl Radiat Isot ; 201: 110991, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37643555

ABSTRACT

Melting of metallic waste reduces the waste volume, allows more accurate radiological characterization, and minimizes handling at the waste production site. This paper proposes a new non-destructive assay methodology to radiologically characterize low- and intermediate-level (LILW) waste before melting. A non-destructive assay technique is developed and qualified using geometry optimization technique and sample analysis after melting. Additionally, we present an operational methodology to predict the activity values of the major gamma emitters based on the average dose rate measurements.

2.
Appl Radiat Isot ; 167: 109431, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33011515

ABSTRACT

In the frame of maintenance, upgrade and dismantling activities, activated equipment are removed from the accelerator complex and require characterization in view of their disposal as radioactive waste. The characterization process consists of a series of radiation measurements, complemented by analytical studies, which quantify the activity of radionuclides inside an object. A fraction of the radioactive waste produced at CERN presents contact dose-rates higher than 100 µSv/h, and can therefore be classified as LILW Waste ("Low and intermediate level radioactive waste"). These objects, due to the activation mechanisms, are often subject to large activity heterogeneities. The quantification of gamma-emitting radionuclides is typically performed by gamma spectrometry, under the assumption of homogeneous distributions of activity within an object. However, this assumption can lead to underestimating the activity value of such radionuclides. In this article we perform a gamma spectrometry qualification in order to quantify the impact of assuming homogenous distribution.

3.
Appl Radiat Isot ; 166: 109419, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32980765

ABSTRACT

In the framework of maintenance activities in particle accelerators, such as upgrades and dismantling, a large number of activated equipment are removed from the accelerator complex and require characterization in view of their disposal as radioactive waste. In particular, cables can be of different types. This feature induces variations of the efficiency calibration curves due to the variation of the material composition, source distribution and density. Hence, quantifying the activities of the gamma-emitting radionuclides can be quite challenging for mixed cables. In this article, we propose a new qualification methodology, based on gamma spectrometry, in order to assess the activity results uncertainties of gamma-emitting radionuclides. This new methodology is developed to define the envelop efficiency calibration curves and allows for the establishment of more accurate activity values with their corresponding uncertainties.

4.
Appl Radiat Isot ; 166: 109312, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32871509

ABSTRACT

The elimination of very low level waste towards the French national repository requires their radiological characterization to estimate the radionuclide inventory and the associated activities within a waste package. Such characterization is performed by means of activation calculations and measurements. Two elimination projects have been identified at CERN, to dispose of bulk metallic waste and cables activated in the CERN accelerator complex. Based on the experience gained over the last 4 years, we develop a large scale elimination process to dispose of such types of activated equipment. A program for quality controls has therefore been developed through a novel software tool whose purpose is to compute the radiological data required by the repository for the acceptance of the waste as well as performing quality controls.

5.
Appl Radiat Isot ; 165: 109303, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32771870

ABSTRACT

Maintenance activities and operations of high-energy particle accelerators can lead to the collection of radioactive equipment as well as waste materials. In order to ensure their proper classification as radioactive or non-radioactive, one has to quantify the activities of radionuclides produced. According to the regulatory requirements in Switzerland, these activities need to be compared with nuclide-specific clearance limits. In particular, a new set of clearance limits was introduced by the Swiss authorities in January 2018, leading to more conservative values for a number of relevant radionuclides. We describe in this paper a new methodology based on dose-rate measurements to classify potentially radioactive objects at the exit of the CERN accelerator complex. This methodology concerns the specific material compositions typically found at CERN and takes into account the latest clearance limits introduced by the Swiss authorities.

6.
Appl Radiat Isot ; 166: 109352, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32836164

ABSTRACT

Activation of material is of interest for waste treatment and hazard assessment. In particular, activation of printed circuit can lead to the production of radionuclides at an isomeric state, for example, coming from silver. In particle accelerators, the production of silver isomeric states mainly come from low energy neutrons, below 20 MeV. The quantification of activation and associated doses at CERN is based on the FLUKA and ActiWiz codes. In the FLUKA release 2011.2c, all branching ratios for isomer production were set at 50% by default. The present work provides a set of nuclide- and energy-dependent branching ratios, extracted from the library EAF-2010. In the ActiWiz release 3.3, the library JEFF3.1.1 was used for low energy neutron cross-sections. This study provides a new set of neutron cross-sections extracted from JEFF3.3, ENDFB/VIII.0 and EAF-2010 for future update of ActiWiz.

7.
Appl Radiat Isot ; 159: 109092, 2020 May.
Article in English | MEDLINE | ID: mdl-32250766

ABSTRACT

Nuclear power plants and research facilities commonly employ the so-called scaling factor (SF) method to quantify the activity of difficult-to-measure (DTM) radionuclides within their radioactive waste packages. The method relies on the establishment of a relationship between an easy-to-measure (ETM) radionuclide, called key nuclide (KN), and difficult-to-measure radionuclides, after the collection of a representative sample from the waste population. The distribution of the scaling factors, as well as the parameters defining the distribution, can change over time. Therefore, the accuracy of the calculated activity of the DTM radionuclides depends on the capacity of the scaling factor method to follow the time evolution of the waste population. In practice, waste producers collect periodically new samples from the waste population and check the variation and the validity of the scaling factors. In this article, we present a simple Bayesian framework to update scaling factors when a new data set becomes available. The method is tested and validated for radioactive waste produced at CERN (European Organization for Nuclear Research) and can be easily implemented for waste of different origin.

8.
Appl Radiat Isot ; 155: 108929, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31675542

ABSTRACT

The gamma spectroscopy technique is commonly used in many applications to evaluate the activity of gamma emitters in a given sample. This assessment of activity is of particular interest for the disposal of radioactive waste or for clearance purposes. However, for these specific applications, one needs to show that the evaluated activities are reasonably conservative. This paper shows an application of a methodology developed to quantify the efficiency calibration curve uncertainties originating from a test case sample and its associated geometry modelling. Therefore, the effects of enclosing geometries on the activity measurement results are discussed. The purpose is to provide an example of uncertainty analysis for an approach that could be applied to other studies in which a conservative estimation of the activity is required.

9.
Appl Radiat Isot ; 156: 108953, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31734031

ABSTRACT

Material activation can sometimes cause large heterogeneities in the distribution of radioactivity (hotspots). Moreover, the sample geometry parameters are not always well known. When performing gamma-spectroscopy to quantify the radionuclide inventory in activated materials, often predefined models are used to represent the sample geometry (dimensions, source-to-detector distance, material type) and their activity distribution, for efficiency calibration. This simplification causes uncertainties of the efficiency curves associated with the model and consequently, to the activity results. In this paper, we develop a new approach, based on ISOCS/LabSOCS to quantify and reduce uncertainties originating from the geometry model. The theory is described in this document and an experimental case is discussed.

10.
Radiat Prot Dosimetry ; 146(4): 434-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21697180

ABSTRACT

Particle accelerators and their surroundings are locations of residual radioactivity production that is induced by the interaction of high-energy particles with matter. This paper gives an overview of the principles of activation caused at proton accelerators, which are the main machines operated at Conseil Européen pour la Recherche Nucléaire. It describes the parameters defining radio-nuclide production caused by beam losses. The second part of the paper concentrates on the analytic calculation of activation and the Monte Carlo approach as it is implemented in the FLUKA code. Techniques used to obtain, on the one hand, estimates of radioactivity in Becquerel and, on the other hand, residual dose rates caused by the activated material are discussed. The last part of the paper focuses on experiments that allow for benchmarking FLUKA activation calculations and on simulations used to predict activation in and around high-energy proton machines. In that respect, the paper addresses the residual dose rate that will be induced by proton-proton collisions at an energy of two times 7 TeV in and around the Compact Muon Solenoid (CMS) detector. Besides activation of solid materials, the air activation expected in the CMS cavern caused by this beam operation is also discussed.


Subject(s)
Algorithms , Construction Materials/analysis , Monte Carlo Method , Occupational Exposure/prevention & control , Particle Accelerators/instrumentation , Protons , Radiation Protection/methods , Radiometry/methods , Benchmarking/methods , Construction Materials/standards , Radiation Dosage , Radioactivity , Scattering, Radiation
11.
Radiat Prot Dosimetry ; 116(1-4 Pt 2): 380-6, 2005.
Article in English | MEDLINE | ID: mdl-16604664

ABSTRACT

CERN's radiation protection group operates a network of simple and robust ionisation chambers that are installed inside CERN's accelerator tunnels. These ionisation chambers are used for the remote reading of ambient dose rate equivalents inside the machines during beam-off periods. This Radiation Protection Monitor for dose rates due to Induced Radioactivity ('PMI', trade name: PTW, Type 34031) is a non-confined air ionisation plastic chamber which is operated under atmospheric pressure. Besides its current field of operation it is planned to extend the use of this detector in the Large Hadron Collider to measure radiation under beam operation conditions to obtain an indication of the machine performance. Until now, studies of the PMI detector have been limited to the response to photons. In order to evaluate its response to other radiation components, this chamber type was tested at CERF, the high-energy reference field facility at CERN. Six PMI detectors were installed around a copper target being irradiated by a mixed hadron beam with a momentum of 120 GeV c(-1). Each of the chosen detector positions was defined by a different radiation field, varying in type and energy of the incident particles. For all positions, detailed measurements and FLUKA simulations of the detector response were performed. This paper presents the promising comparison between the measurements and simulations and analyses the influence of the different particle types on the resulting detector response.


Subject(s)
Computer-Aided Design , Models, Statistical , Radiation Monitoring/instrumentation , Radiation Protection/instrumentation , Air , Computer Simulation , Equipment Design , Equipment Failure Analysis , Monte Carlo Method , Radiation Dosage , Radiation Monitoring/methods , Radiation Protection/methods , Reproducibility of Results , Sensitivity and Specificity , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...