Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
NPJ Regen Med ; 9(1): 17, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684697

ABSTRACT

Historically, a lower incidence of cardiovascular diseases (CVD) and related deaths in women as compared with men of the same age has been attributed to female sex hormones, particularly estrogen and its receptors. Autologous bone marrow stem cell (BMSC) clinical trials for cardiac cell therapy overwhelmingly included male patients. However, meta-analysis data from these trials suggest a better functional outcome in postmenopausal women as compared with aged-matched men. Mechanisms governing sex-specific cardiac reparative activity in BMSCs, with and without the influence of sex hormones, remain unexplored. To discover these mechanisms, Male (M), female (F), and ovariectomized female (OVX) mice-derived EPCs were subjected to a series of molecular and epigenetic analyses followed by in vivo functional assessments of cardiac repair. F-EPCs and OVX EPCs show a lower inflammatory profile and promote enhanced cardiac reparative activity after intra-cardiac injections in a male mouse model of myocardial infarction (MI). Epigenetic sequencing revealed a marked difference in the occupancy of the gene repressive H3K9me3 mark, particularly at transcription start sites of key angiogenic and proinflammatory genes in M-EPCs compared with F-EPCs and OVX-EPCs. Our study unveiled that functional sex differences in EPCs are, in part, mediated by differential epigenetic regulation of the proinflammatory and anti-angiogenic gene CCL3, orchestrated by the control of H3K9me3 by histone methyltransferase, G9a/Ehmt2. Our research highlights the importance of considering the sex of donor cells for progenitor-based tissue repair.

2.
Article in English | MEDLINE | ID: mdl-38427976

ABSTRACT

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality, affecting people of all races, ages, and sexes. Substantial sex dimorphism exists in the prevalence, manifestation, and outcomes of CVDs. Understanding the role of sex hormones as well as sex-hormone-independent epigenetic mechanisms could play a crucial role in developing effective and sex-specific cardiovascular therapeutics. Existing research highlights significant disparities in sex hormones, epigenetic regulators, and gene expression related to cardiac health, emphasizing the need for a nuanced understanding of these variations between men and women. Despite these differences, current treatment approaches for CVDs often lack sex-specific considerations. A pivotal shift toward personalized medicine, informed by comprehensive insights into sex-specific DNA methylation, histone modifications, and non-coding RNA dynamics, holds the potential to revolutionize CVD management. By understanding sex-specific epigenetic complexities, independent of sex hormone influence, future cardiovascular research can be tailored to achieve effective diagnostic and therapeutic interventions for both men and women. This review summarizes the current knowledge and gaps in epigenetic mechanisms and sex dimorphism implicated in CVDs.

3.
Theranostics ; 12(9): 4415-4430, 2022.
Article in English | MEDLINE | ID: mdl-35673580

ABSTRACT

Background and Purpose: Myocardial infarction (MI) in diabetic patients results in higher mortality and morbidity. We and others have previously shown that bone marrow-endothelial progenitor cells (EPCs) promote cardiac neovascularization and attenuate ischemic injury. Lately, small extracellular vesicles (EVs) have emerged as major paracrine effectors mediating the benefits of stem cell therapy. Modest clinical outcomes of autologous cell-based therapies suggest diabetes-induced EPC dysfunction and may also reflect their EV derivatives. Moreover, studies suggest that post-translational histone modifications promote diabetes-induced vascular dysfunctions. Therefore, we tested the hypothesis that diabetic EPC-EVs may lose their post-injury cardiac reparative function by modulating histone modification in endothelial cells (ECs). Methods: We collected EVs from the culture medium of EPCs isolated from non-diabetic (db/+) and diabetic (db/db) mice and examined their effects on recipient ECs and cardiomyocytes in vitro, and their reparative function in permanent ligation of left anterior descending (LAD) coronary artery and ischemia/reperfusion (I/R) myocardial ischemic injuries in vivo. Results: Compared to db/+ EPC-EVs, db/db EPC-EVs promoted EC and cardiomyocyte apoptosis and repressed tube-forming capacity of ECs. In vivo, db/db EPC-EVs depressed cardiac function, reduced capillary density, and increased fibrosis compared to db/+ EPC-EV treatments after MI. Moreover, in the I/R MI model, db/+ EPC-EV-mediated acute cardio-protection was lost with db/db EPC-EVs, and db/db EPC-EVs increased immune cell infiltration, infarct area, and plasma cardiac troponin-I. Mechanistically, histone 3 lysine 9 acetylation (H3K9Ac) was significantly decreased in cardiac ECs treated with db/db EPC-EVs compared to db/+ EPC-EVs. The H3K9Ac chromatin immunoprecipitation sequencing (ChIP-Seq) results further revealed that db/db EPC-EVs reduced H3K9Ac level on angiogenic, cell survival, and proliferative genes in cardiac ECs. We found that the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), partly restored diabetic EPC-EV-impaired H3K9Ac levels, tube formation and viability of ECs, and enhanced cell survival and proliferative genes, Pdgfd and Sox12, expression. Moreover, we observed that VPA treatment improved db/db EPC-mediated post-MI cardiac repair and functions. Conclusions: Our findings unravel that diabetes impairs EPC-EV reparative function in the ischemic heart, at least partially, through HDACs-mediated H3K9Ac downregulation leading to transcriptional suppression of angiogenic, proliferative and cell survival genes in recipient cardiac ECs. Thus, HDAC inhibitors may potentially be used to restore the function of diabetic EPC and other stem cells for autologous cell therapy applications.


Subject(s)
Diabetes Mellitus , Endothelial Progenitor Cells , Extracellular Vesicles , Myocardial Infarction , Animals , Diabetes Mellitus/metabolism , Extracellular Vesicles/metabolism , Histones/metabolism , Humans , Mice , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , SOXC Transcription Factors/metabolism
4.
Stem Cells Transl Med ; 10(12): 1602-1613, 2021 12.
Article in English | MEDLINE | ID: mdl-34519179

ABSTRACT

Buerger's disease or thromboangiitis obliterans is a type of obstructive vascular diseases categorized as vasculitis and usually present in 95% of young smoker men. The main pathogenetic mechanism is interplay between immune system and inflammation. Earlier our phase II study has shown that Stempeucel is safe when injected at 2 million cells/kg body weight by virtue of its anti-inflammatory, immunomodulatory, and angiogenetic properties. The present study was conducted to further assess the safety and efficacy of Stempeucel in critical limb ischemia due to Buerger's disease after obtaining approval from Indian FDA based on the data generated in the phase II study. This is an open label, multicenteric phase IV PMS study conducted across India with experienced vascular surgeons. Fifty patients of critical limb ischemia due to Buerger's disease with Rutherford III-5 or III-6 were included in the study and each individual received a dose of 2 million cells/kg body weight of Stempeucel in the calf muscles and around the ulcer. These patients were evaluated over 12 months from drug administration. The present study showed the continued long term efficacy over a period of 12 months follow up in these patients corroborating the result obtained in the previous phase II studies. There was significant improvement in rest pain, ankle systolic pressure, and ankle brachial pressure index with accelerated ulcer healing. In conclusion, the present study shows that the intramuscular administration of Stempeucel continues to be safe, tolerable, and effective alternative treatment in patients with Buerger's disease.


Subject(s)
Thromboangiitis Obliterans , Chronic Limb-Threatening Ischemia , Humans , Ischemia/surgery , Lower Extremity , Male , Thromboangiitis Obliterans/complications , Thromboangiitis Obliterans/therapy , Treatment Outcome
5.
Cells ; 10(7)2021 07 17.
Article in English | MEDLINE | ID: mdl-34359980

ABSTRACT

Exosomes formed from the endosomal membranes at the lipid microdomains of multivesicular bodies (MVBs) have become crucial structures responsible for cell communication. This paracrine communication system between a myriad of cell types is essential for maintaining homeostasis and influencing various biological functions in immune, vasculogenic, and regenerative cell types in multiple organs in the body, including, but not limited to, cardiac cells and tissues. Characteristically, exosomes are identifiable by common proteins that participate in their biogenesis; however, many different proteins, mRNA, miRNAs, and lipids, have been identified that mediate intercellular communication and elicit multiple functions in other target cells. Although our understanding of exosomes is still limited, the last decade has seen a steep surge in translational studies involving the treatment of cardiovascular diseases with cell-free exosome fractions from cardiomyocytes (CMs), cardiosphere-derived cells (CDCs), endothelial cells (ECs), mesenchymal stromal cells (MSCs), or their combinations. However, most primary cells are difficult to culture in vitro and to generate sufficient exosomes to treat cardiac ischemia or promote cardiac regeneration effectively. Pluripotent stem cells (PSCs) offer the possibility of an unlimited supply of either committed or terminally differentiated cells and their exosomes for treating cardiovascular diseases (CVDs). This review discusses the promising prospects of treating CVDs using exosomes from cardiac progenitor cells (CPCs), endothelial progenitor cells (EPCs), MSCs, and cardiac fibroblasts derived from PSCs.


Subject(s)
Exosomes/metabolism , Heart/physiopathology , Regeneration/physiology , Stem Cells/metabolism , Translational Research, Biomedical , Animals , Clinical Trials as Topic , Humans
6.
Stem Cell Res Ther ; 12(1): 279, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33971964

ABSTRACT

BACKGROUND: We have previously demonstrated that a pooled population of bone marrow-derived, allogeneic mesenchymal stromal cells (BMMSC), Stempeucel®-1, produced under good manufacturing practices (GMP) conditions, showed clinical efficacy and safety in patients suffering from critical limb ischemia (CLI) due to Buerger's disease. While Stempeucel®-1 is currently used for CLI and other clinical indications, we wanted to ensure that the product's continuity is addressed by developing and characterizing a second generation of pooled product (Stempeucel®-1A), manufactured identically from second BM aspirates of the same three donors after a 2-year interval. METHODS: The two versions of Stempeucel® were manufactured and subjected to gene and protein expression analysis. The nature of various growth factors/cytokines secreted and immunomodulatory activity of these two cell populations were compared directly by various in vitro assays. The preclinical efficacy of these two cell types was compared in an experimental model of hind limb ischemia (HLI) in BALB/c nude mice. The reversal of ischemia, blood flow, and muscle regeneration were determined by functional scoring, laser Doppler imaging, and immunohistochemical analyses. RESULTS: Qualitative and quantitative analyses of genes and proteins involved in promoting angiogenic activity and immune regulatory functions revealed high levels of correlation between Stempeucel®-1 and Stempeucel®-1A cell populations. Moreover, intramuscular (i.m) administration of these two cell products in the ischemic limbs of BALB/c nude mice showed significant repair (≥ 70%) of toe and foot necrosis, leading to improved ambulatory function and limb salvage. Furthermore, a biodistribution kinetics study showed that Stempeucel®-1 was mostly localized in the ischemic muscles of mice for a significantly longer time compared to normal muscles, thus playing an essential role in modulating and reversing HLI damage. CONCLUSIONS: This study shows that with a reproducible manufacturing procedure, it is possible to generate large numbers of pooled mesenchymal stromal cells from human bone marrow samples to establish product equivalence. We conclude from these results that, for the first time, two pooled, allogeneic BMMSC products can be repeatedly manufactured at different time intervals using a two-tier cell banking process with robust and comparable angiogenic properties to treat ischemic diseases.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Bone Marrow , Hindlimb , Humans , Ischemia/therapy , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Physiologic , Tissue Distribution
9.
Stem Cell Res Ther ; 8(1): 143, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28610623

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) from various tissues have shown moderate therapeutic efficacy in reversing liver fibrosis in preclinical models. Here, we compared the relative therapeutic potential of pooled, adult human bone marrow (BM)- and neonatal Wharton's jelly (WJ)-derived MSCs to treat CCl4-induced liver fibrosis in rats. METHODS: Sprague-Dawley rats were injected with CCl4 for 8 weeks to induce irreversible liver fibrosis. Ex-vivo expanded, pooled human MSCs obtained from BM and WJ were intravenously administered into rats with liver fibrosis at a dose of 10 × 106 cells/animal. Sham control and vehicle-treated animals served as negative and disease controls, respectively. The animals were sacrificed at 30 and 70 days after cell transplantation and hepatic-hydroxyproline content, histopathological, and immunohistochemical analyses were performed. RESULTS: BM-MSCs treatment showed a marked reduction in liver fibrosis as determined by Masson's trichrome and Sirius red staining as compared to those treated with the vehicle. Furthermore, hepatic-hydroxyproline content and percentage collagen proportionate area were found to be significantly lower in the BM-MSCs-treated group. In contrast, WJ-MSCs treatment showed less reduction of fibrosis at both time points. Immunohistochemical analysis of BM-MSCs-treated liver samples showed a reduction in α-SMA+ myofibroblasts and increased number of EpCAM+ hepatic progenitor cells, along with Ki-67+ and human matrix metalloprotease-1+ (MMP-1+) cells as compared to WJ-MSCs-treated rat livers. CONCLUSIONS: Our findings suggest that BM-MSCs are more effective than WJ-MSCs in treating liver fibrosis in a CCl4-induced model in rats. The superior therapeutic activity of BM-MSCs may be attributed to their expression of certain MMPs and angiogenic factors.


Subject(s)
Bone Marrow Transplantation , Liver Cirrhosis/therapy , Mesenchymal Stem Cell Transplantation , Animals , Carbon Tetrachloride/toxicity , Disease Models, Animal , Epithelial Cell Adhesion Molecule/genetics , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mesenchymal Stem Cells/cytology , Myofibroblasts/metabolism , Rats , Wharton Jelly/cytology
10.
Stem Cell Res Ther ; 8(1): 47, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28245882

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) have emerged as a more beneficial alternative to conventional therapy and may offer a potential cure for unmet medical needs. MSCs are known to possess strong immunomodulatory and anti-inflammatory properties. Moreover, they promote angiogenesis and tissue regeneration through the secretion of trophic factors. For these reasons, the past decade witnessed a sharp increase in the number of clinical trials conducted with stem cells for various vascular diseases requiring angiogenesis. In this study, we evaluated the in vitro angiogenic potency of Stempeucel®, which is an allogeneic pooled human bone marrow-derived mesenchymal stromal cell (phBMMSC) product. We previously established the safety of Stempeucel® in our pre-clinical studies, and clinical trials conducted for critical limb ischaemia and acute myocardial infarction. METHODS: Because the proposed mechanism of action of phBMMSCs is mainly through the secretion of pro-angiogenic cytokines, we developed a surrogate potency assay by screening various batches of large-scale expanded phBMMSCs for the expression of angiogenic factors and cytokines through gene expression and growth factor analyses, followed by in vitro functional assays. RESULTS: The well characterized angiogenic vascular endothelial growth factor (VEGF) was selected and quantified in twenty six manufactured batches of phBMMSCs to establish consistency following the United States Food and Drug Administration recommendations. According to recommendations 21 CFR 211.165(e) and 211.194(a)(2), we also established and documented the specificity and reproducibility of the test methods employed through validation. Moreover, we also attempted to elucidate the mechanism of action of the cell population to ensure appropriate biological activity. The functional role of VEGF has been established through in vitro angiogenic assays and a dose-dependent correlation was observed with in vitro functional results. CONCLUSIONS: The data generated from this study suggest the selection of VEGF as a single surrogate marker to test the angiogenic potency of phBMMSCs. Our study reports the quantification of VEGF in twenty six batches of large-scale manufactured phBMMSCs, and a concentration-dependent correlation of secreted VEGF to endothelial cell functions of migration, proliferation and tube formation, in the conditioned medium obtained from nine phBMMSC batches. To our cognizance, this is the first study in which a single angiogenic factor (VEGF) has been qualified as a surrogate potency marker through all three in vitro functional assays to determine the angiogenic potency of the phBMMSC population.


Subject(s)
Angiogenesis Inducing Agents/immunology , Biological Assay/standards , Bone Marrow Cells/immunology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Vascular Endothelial Growth Factor A/immunology , Angiogenesis Inducing Agents/chemistry , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemokine CXCL12/genetics , Chemokine CXCL12/immunology , Culture Media, Conditioned/chemistry , Gene Expression , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/immunology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/immunology , Humans , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Primary Cell Culture , Ribonuclease, Pancreatic/genetics , Ribonuclease, Pancreatic/immunology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/immunology , Transplantation, Homologous , Vascular Endothelial Growth Factor A/genetics
11.
Stem Cells Transl Med ; 6(3): 689-699, 2017 03.
Article in English | MEDLINE | ID: mdl-28297569

ABSTRACT

Critical limb ischemia (CLI) due to Buerger's disease is a major unmet medical need with a high incidence of morbidity. This phase II, prospective, nonrandomized, open-label, multicentric, dose-ranging study was conducted to assess the efficacy and safety of i.m. injection of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (BMMSC) in CLI due to Buerger's disease. Patients were allocated to three groups: 1 and 2 million cells/kg body weight (36 patients each) and standard of care (SOC) (18 patients). BMMSCs were administered as 40-60 injections in the calf muscle and locally, around the ulcer. Most patients were young (age range, 38-42 years) and ex-smokers, and all patients had at least one ulcer. Both the primary endpoints-reduction in rest pain (0.3 units per month [SE, 0.13]) and healing of ulcers (11% decrease in size per month [SE, 0.05])-were significantly better in the group receiving 2 million cells/kg body weight than in the SOC arm. Improvement in secondary endpoints, such as ankle brachial pressure index (0.03 [SE, 0.01] unit increase per month) and total walking distance (1.03 [SE, 0.02] times higher per month), were also significant in the group receiving 2 million cells/kg as compared with the SOC arm. Adverse events reported were remotely related or unrelated to BMMSCs. In conclusion, i.m. administration of BMMSC at a dose of 2 million cells/kg showed clinical benefit and may be the best regimen in patients with CLI due to Buerger's disease. However, further randomized controlled trials are required to confirm the most appropriate dose. Stem Cells Translational Medicine 2017;6:689-699.


Subject(s)
Bone Marrow Cells/cytology , Extremities/blood supply , Ischemia/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Thromboangiitis Obliterans/therapy , Adolescent , Adult , Animals , Cells, Cultured , Extremities/pathology , Female , Humans , Injections, Intramuscular , Ischemia/pathology , Magnetic Resonance Angiography , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/metabolism , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Thromboangiitis Obliterans/pathology , Transplantation, Autologous , Treatment Outcome , Young Adult
12.
Arthritis Res Ther ; 18(1): 301, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993154

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a common and debilitating chronic degenerative disease of the joints. Currently, cell-based therapy is being explored to address the repair of damaged articular cartilage in the knee joint. METHODS: The in vitro differentiation potential of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®) was determined by differentiating the cells toward the chondrogenic lineage and quantifying sulfated glycosaminoglycan (sGAG). The mono-iodoacetate (MIA)-induced preclinical model of OA has been used to demonstrate pain reduction and cartilage formation. In the clinical study, 60 OA patients were randomized to receive different doses of cells (25, 50, 75, or 150 million cells) or placebo. Stempeucel® was administered by intra-articular (IA) injection into the knee joint, followed by 2 ml hyaluronic acid (20 mg). Subjective evaluations-visual analog scale (VAS) for pain, intermittent and constant osteoarthritis pain (ICOAP), and Western Ontario and McMaster Universities Osteoarthritis (WOMAC-OA) index-were performed at baseline and at 1, 3, 6, and 12 months of follow-up. Magnetic resonance imaging of the knee was performed at baseline, and at 6 and 12 months follow-up for cartilage evaluation. RESULTS: Stempeucel® differentiated into the chondrogenic lineage in vitro with downregulation of Sox9 and upregulation of Col2A genes. Furthermore, Stempeucel® differentiated into chondrocytes and synthesized a significant amount of sGAG (30 ± 1.8 µg/µg GAG/DNA). In the preclinical model of OA, Stempeucel® reduced pain significantly and also repaired damaged articular cartilage in rats. In the clinical study, IA administration of Stempeucel® was safe, and a trend towards improvement was seen in the 25-million-cell dose group in all subjective parameters (VAS, ICOAP, andWOMAC-OA scores), although this was not statistically significant when compared to placebo. Adverse events were predominant in the higher dose groups (50, 75, and 150 million cells). Knee pain and swelling were the most common adverse events. The whole-organ magnetic resonance imaging score of the knee did not reveal any difference from baseline and the placebo group. CONCLUSION: Intra-articular administration of Stempeucel® is safe. A twenty-five-million-cell dose may be the most effective among the doses tested for pain reduction. Clinical studies with a larger patient population are required to demonstrate a robust therapeutic efficacy of Stempeucel® in OA. TRIAL REGISTRATION: Clinicaltrials.gov NCT01453738 . Registered 13 October 2011.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Osteoarthritis, Knee/surgery , Adult , Aged , Animals , Bone Marrow , Cell Differentiation , Female , Humans , Male , Middle Aged , Polymerase Chain Reaction , Rats , Rats, Wistar
13.
Stem Cell Res Ther ; 5(4): 88, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25069491

ABSTRACT

INTRODUCTION: Mesenchymal stromal/stem cells (MSCs) for clinical use have largely been isolated from the bone marrow, although isolation of these cells from many different adult and fetal tissues has been reported as well. One such source of MSCs is the Whartons Jelly (WJ) of the umbilical cord, as it provides an inexhaustible source of stem cells for potential therapeutic use. Isolation of MSCs from the umbilical cord also presents little, if any, ethical concerns, and the process of obtaining the cord tissue is relatively simple with appropriate consent from the donor. However, a great majority of studies rely on the use of bovine serum containing medium for isolation and expansion of these cells, and porcine derived trypsin for dissociating the cells during passages, which may pose potential risks for using these cells in clinical applications. It is therefore of high priority to develop a robust production process by optimizing culture variables to efficiently and consistently generate MSCs that retain desired regenerative and differentiation properties while minimizing risk of disease transmission. METHODS: We have established a complete xeno-free, serum-free culture condition for isolation, expansion and characterization of WJ-MSCs, to eliminate the use of animal components right from initiation of explant culture to clinical scale expansion and cryopreservation. Growth kinetics, in vitro differentiation capacities, immunosuppressive potential and immunophenotypic characterization of the cells expanded in serum-free media have been compared against those cultured under standard fetal bovine serum (FBS) containing medium. We have also compared the colony-forming frequency and genomic stability of the large scale expanded cells. Secretome analysis was performed to compare the angiogenic cytokines and functional angiogenic potency was proved by Matrigel assays. RESULTS: Results presented in this report identify one such serum-free, xeno-free medium for WJ expansion. Cells cultured in serum-free, xeno-free medium exhibit superior growth kinetics and functional angiogenesis, alongside other MSC characteristics. CONCLUSIONS: We report here that WJ-MSCs cultured and expanded in Mesencult XF, SF Medium retain all necessary characteristics attributed to MSC for potential therapeutic use.


Subject(s)
Cell Culture Techniques , Mesenchymal Stem Cells/cytology , Wharton Jelly/cytology , Cell Cycle , Cell Differentiation , Cell Proliferation , Cellular Senescence , Culture Media , Culture Media, Serum-Free , Genomic Instability , Humans , Xenobiotics
14.
Cell Biol Int ; 37(5): 507-15, 2013 May.
Article in English | MEDLINE | ID: mdl-23418097

ABSTRACT

Mesenchymal stromal cells (MSCs) derived from different tissue sources are capable of differentiating into neural and glial cell types. However, the efficiency of differentiation varies between MSCs derived from different tissues. We compared the efficiency of neural progenitor population generation between adipose (AD), bone marrow (BM) and Wharton's jelly (WJ) derived MSCs. MSCs isolated from the three sources were induced to form primary neurospheres using epidermal growth factor (20 ng/mL) and bFGF (20 ng/mL). The self-renewal potential of the primary neurospheres was assessed by secondary neurosphere assay. Primary neurospheres were differentiated to neuronal lineage on fibronectin-coated dishes. The neurospheres and the resulting differentiated cells were characterized by immunocytochemistry and the RT-PCR analyses. We have also investigated the secretome profile of neuronal-related growth factors using Ray biotech cytokine array. The results show that MSCs from the three sources can be induced to generate neurospheres and they expressed neural progenitor markers nestin, Sox2 and Pax6 transcription factors. When differentiated on fibronectin coated dishes in mitogen free culture conditions, the primary spheres from all three sources were able to generate neuron/glial - like cells which expressed Nfl, Map2 and GFAP with varied efficiency. Self-renewal potential of these progenitors was determined by secondary sphere formation. WJ- and BM-derived neurospheres were able to self-renew, while AD derived progenitors failed to do so. Comparison of the secretome profile suggested that WJ derived MSCs secrete more neurotrophic factors. The data suggest that human WJ derived MSCs can be induced to make neural progenitors with higher efficiency compared to BM and AD derived MSCs.


Subject(s)
Adipose Tissue/cytology , Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Neural Stem Cells/cytology , Wharton Jelly/cytology , Cell Differentiation , Cell Lineage , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nestin/metabolism , Neurofilament Proteins/metabolism , PAX6 Transcription Factor , Paired Box Transcription Factors/metabolism , Repressor Proteins/metabolism , SOXB1 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...