Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37409908

ABSTRACT

Feshbach association of ultracold molecules using narrow resonances requires exquisite control of the applied magnetic field. Here, we present a magnetic field control system to deliver magnetic fields of over 1000 G with ppm-level precision integrated into an ultracold-atom experimental setup. We combine a battery-powered, current-stabilized power supply with active feedback stabilization of the magnetic field using fluxgate magnetic field sensors. As a real-world test, we perform microwave spectroscopy of ultracold Rb atoms and demonstrate an upper limit on our magnetic field stability of 2.4(3) mG at 1050 G [2.3(3) ppm relative] as determined from the spectral feature.


Subject(s)
Electric Power Supplies , Magnetic Fields , Vibration
2.
Nature ; 570(7760): 205-209, 2019 06.
Article in English | MEDLINE | ID: mdl-31168098

ABSTRACT

Some of the most sensitive and precise measurements-for example, of inertia1, gravity2 and rotation3-are based on matter-wave interferometry with free-falling atomic clouds. To achieve very high sensitivities, the interrogation time has to be very long, and consequently the experimental apparatus needs to be very tall (in some cases reaching ten or even one hundred metres) or the experiments must be performed in microgravity in space4-7. Cancelling gravitational acceleration (for example, in atomtronic circuits8,9 and matter-wave guides10) is expected to result in compact devices with extended interrogation times and therefore increased sensitivity. Here we demonstrate smooth and controllable matter-wave guides by transporting Bose-Einstein condensates (BECs) over macroscopic distances. We use a neutral-atom accelerator ring to bring BECs to very high speeds (16 times their sound velocity) and transport them in a magnetic matter-wave guide for 15 centimetres while fully preserving their internal coherence. The resulting high angular momentum of more than 40,000h per atom (where h is the reduced Planck constant) gives access to the higher Landau levels of quantum Hall states, and the hypersonic velocities achieved, combined with our ability to control potentials with picokelvin precision, will facilitate the study of superfluidity and give rise to tunnelling and a large range of transport regimes of ultracold atoms11-13. Coherent matter-wave guides are expected to enable interaction times of several seconds in highly compact devices and lead to portable guided-atom interferometers for applications such as inertial navigation and gravity mapping.

SELECTION OF CITATIONS
SEARCH DETAIL
...