Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 6(3): txac083, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35854968

ABSTRACT

The objective of this experiment was to evaluate the effects of a multi-strain Bacillus subtilis-based direct-fed microbial (DFM) on nursery pig health as indicated by intestinal mucosal and blood plasma immunological markers and intestinal morphology. Eighty pigs, of equal number of barrows and gilts (initial BW: 7.0 ±â€…0.60 kg), weaned at 21 ±â€…1 d of age were randomly allotted to sixteen pens, with five pigs per pen. Two dietary treatments were implemented, a basal control (CON) and a basal control plus DFM (CDFM). Both diets were corn, soybean meal, and distillers dried grains based and were formulated to meet or exceed all nutritional requirements (NRC, 2012) and manufactured on site. Diets were fed for 42 d. On d 21 and 42 of the experiment, one pig per pen was randomly selected and euthanized, with equal number of males and females represented. Blood samples were collected prior to euthanasia for assessment of plasma concentrations of immunoglobulin A (IgA) and intestinal fatty acid binding protein. Segments of the gastrointestinal tract including duodenum, jejunum, ileum, ascending and distal colon were removed for analysis of intestinal morphology, and levels of interleukin 6, interleukin 10 (IL-10), and tumor necrosis factor alpha. Jejunal villus height was greater in the CDFM pigs as compared with CON pigs (P = 0.02) and ascending colon crypt depth tended to be greater on d 21 (P = 0.10). Compared to CON, CDFM significantly increased overall plasma IgA (P = 0.03) (0.58 vs. 0.73 0.05 mg/mL, respectively), while it tended to increase plasma IgA (P = 0.06) on d 21 (0.34 vs. 0.54 ±â€…0.07 mg/mL, respectively) and tended to increase overall IL-10 (P = 0.10) in the jejunum (113 vs. 195 ±â€…35 pg/mL, respectively). Addition of a multi-strain Bacillus subtilis-based DFM may have an early benefit to nursery pig health status, observed through specific changes in morphology and both systemic and localized immunological markers.

2.
Brain Behav Immun ; 103: 73-84, 2022 07.
Article in English | MEDLINE | ID: mdl-35339629

ABSTRACT

Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- dura mater, arachnoid, and piamater - possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on sucrose preference behavior, dura mater expression of inflammatory markers and mast cell histology in adult male and female C57Bl/6 mice. We found that NMSEW alone does not affect sucrose preference behavior in males or females, but it increases the dura mater expression of the genes coding for mast cell protease CMA1 (cma1) and the inflammatory cytokine TNF alpha (tnf alpha) in females. When NMSEW is combined with an adult mild stress (that does not affect behavior or gene expression in NH animals) females show reduced sucrose preference and even greater increases in meningeal cma1 levels. Interestingly, systemic administration of the mast cell stabilizer Ketotifen before exposure to adult stress prevents both, reduction in sucrose preference an increases in cma1 expression in NMSEW females, but facilitates stress-induced sucrose anhedonia in NMSEW males and NH females. Finally, histological analyses showed that, compared to males, females have increased baseline activation levels of mast cells located in the transverse sinus of the dura mater, where the meningeal lymphatics run along, and that, in males and females exposed to adult stress, NMSEW increases the number of mast cells in the interparietal region of the dura mater and the levels of mast cell activation in the sagittal sinus regions of the dura mater. Together, our results indicate that ELA induces long-term meningeal immune gene changes and heightened sensitivity to adult stress-induced behavioral and meningeal immune responses and that these effects could mediated via mast cells.


Subject(s)
Anhedonia , Mast Cells , Sex Factors , Stress, Psychological , Animals , Female , Male , Antigen Presentation , Gene Expression , Maternal Deprivation , Meninges , Sucrose , Tumor Necrosis Factor-alpha , Mice , Mice, Inbred C57BL
3.
Am J Physiol Gastrointest Liver Physiol ; 322(3): G346-G359, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34984921

ABSTRACT

Early-life adversity (ELA) is linked with the increased risk for inflammatory and metabolic diseases in later life, but the mechanisms remain poorly understood. Intestinal epithelial glucose transporters sodium-glucose-linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) are the major route for intestinal glucose uptake but have also received increased attention as modulators of inflammatory and metabolic diseases. Here, we tested the hypothesis that early weaning (EW) in pigs, an established model of ELA, alters the development of epithelial glucose transporters and coincides with elevated markers of metabolic inflammation. The jejunum and ileum of 90-day-old pigs previously exposed to EW (16 days wean age), exhibited reduced SGLT1 activity (by ∼ 30%, P < 0.05) than late weaned (LW, 28 days wean age) controls. In contrast, GLUT2-mediated glucose transport was increased (P = 0.003) in EW pigs than in LW pigs. Reciprocal changes in SGLT1- and GLUT2-mediated transport coincided with transporter protein expression in the intestinal brush-border membranes (BBMs) that were observed at 90 days and 150 days of age. Ileal SGLT1-mediated glucose transport and BBM expression were inhibited by the ß-adrenergic receptor (ßAR) blocker propranolol in EW and LW pigs. In contrast, propranolol enhanced ileal GLUT2-mediated glucose transport (P = 0.015) and brush-border membrane vesicle (BBMV) abundance (P = 0.035) in LW pigs, but not in EW pigs. Early-weaned pigs exhibited chronically elevated blood glucose and C-reactive protein (CRP) levels, and adipocyte hypertrophy and upregulated adipogenesis-related gene expression in visceral adipose tissue. Altered development of intestinal glucose transporters by EW could underlie the increased risk for later life inflammatory and metabolic diseases.NEW & NOTEWORTHY These studies reveal that early-life adversity in the form of early weaning in pigs causes a developmental shift in intestinal glucose transport from SGLT1 toward GLUT2-mediated transport. Early weaning also induced markers of metabolic inflammation including persistent elevations in blood glucose and the inflammatory marker CRP, along with increased visceral adiposity. Altered intestinal glucose transport might contribute to increased risk for inflammatory and metabolic diseases associated with early-life adversity.


Subject(s)
Blood Glucose , Propranolol , Animals , Blood Glucose/metabolism , Female , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Sodium-Glucose Transporter 1/genetics , Swine , Weaning
4.
Transl Anim Sci ; 5(3): txab058, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278233

ABSTRACT

A study was conducted to evaluate the effects of a multi-strain Bacillus subtilis-based direct-fed microbial (DFM) on growth performance and apparent nutrient digestibility of nursery pigs. Eighty pigs, of equal number of barrows and gilts (initial body weight: 7.0 ± 0.60 kg), were weaned at 21 ± 1 d and randomly allotted to 1 of the 16 pens, with 5 pigs per pen. Two dietary treatments were implemented, a basal control (CON) and a control plus DFM (CDFM). Both diets were corn, soybean meal, and distillers dried grains based. Diets were fed for 42 d and growth performance measures were recorded weekly. On days 21 and 42 of the experiment, one pig per pen, with equal number of males and females, was randomly selected and euthanized. Digestibility of nitrogen (N), amino acids (AA), and energy were evaluated within the duodenum, jejunum, ileum, and ascending and distal colon. Relative to CON, CDFM tended to increase ADG during week 2 (P = 0.08) and significantly increased ADFI during week 2 (P = 0.04) and week 3 (P = 0.02). In addition, CDFM decreased the gain to feed ratio (G:F) during week 6 relative to CON (P = 0.04). Within the jejunum, pigs fed the DFM had greater digestibility of tryptophan (P = 0.04) and cysteine (P = 0.04) and tended to have greater digestibility of lysine (P = 0.07), methionine (P = 0.06), and threonine (P = 0.08), relative to CON. The content pH in the ascending colon did not differ between CDFM and CON. Compared with CON, apparent total tract digestibility (ATTD) of energy did not differ from CDFM, whereas ATTD of nitrogen of CDFM was lower (P = 0.05). The addition of a multi-strain B. subtilis-based DFM appears to impact growth performance, AA, and N digestibility depending upon the location in the gastrointestinal tract, with primary AA differences occurring within the mid-jejunum.

5.
Proc Natl Acad Sci U S A ; 117(38): 23751-23761, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32917815

ABSTRACT

Mast cell (MC)-associated diseases, including allergy/anaphylaxis and neuroinflammatory pain disorders, exhibit a sex bias, with females at increase risk. While much attention has been directed toward adult sex hormones as drivers of sex differences, that female sex bias in MC-associated diseases is evident in prepubertal children, suggesting early-life origins of sex differences which have yet to be explored. Utilizing rodent models of MC-mediated anaphylaxis, our data here reveal that, 1) compared with females, males exhibit significantly reduced severity of MC-mediated anaphylactic responses that emerge prior to puberty and persist into adulthood, 2) reduced severity of MC-mediated anaphylaxis in males is linked with the naturally high level of perinatal androgens and can be recapitulated in females by perinatal exposure to testosterone proprionate, 3) perinatal androgen exposure guides bone marrow MC progenitors toward a masculinized tissue MC phenotype characterized by decreased concentration of prestored MC granule mediators (e.g., histamine, serotonin, and proteases) and reduced mediator release upon degranulation, and 4) engraftment of MC-deficient Kit W-sh/W-sh mice with adult male, female, or perinatally androgenized female MCs results in MC-mediated anaphylaxis response that reflects the MC sex and not host sex. Together, these data present evidence that sex differences in MC phenotype and resulting disease severity are established in early life by perinatal androgens. Thus, factors affecting levels of perinatal androgens could have a significant impact on MC development and MC-associated disease risk across the life span.


Subject(s)
Anaphylaxis , Androgens/pharmacology , Mast Cells/drug effects , Sex Factors , Animals , Disease Models, Animal , Female , Inflammation , Male , Mast Cells/physiology , Mice , Mice, Transgenic , Testis/cytology , Testis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...