Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; 20(21): e2306865, 2024 May.
Article in English | MEDLINE | ID: mdl-38126669

ABSTRACT

Functional inks enable manufacturing of flexible electronic devices by means of printing technology. Silver nanoparticle (Ag NP) ink is widely used for printing conductive components. A sintering process is required to obtain sufficient conductivity. Thermal sintering is the most commonly used method, but the heat must be carefully applied to avoid damaging low-temperature substrates such as polymer films. In this work, two alternative sintering methods, damp heat sintering and water sintering are systematically investigated for inkjet-printed Ag tracks on polymer substrates. Both methods allow sintering polyvinyl pyrrolidone (PVP) capped Ag NPs at 85°C. In this way, the resistance is significantly reduced to only 1.7 times that of the samples on polyimide sintered in an oven at 250°C. The microstructure of sintered Ag NPs is analyzed. Taking the states of the capping layer under different conditions into account, the explanation of the sintering mechanism of Ag NPs at low temperatures is presented. Overall, both damp heat sintering and water sintering are viable options for achieving high conductivity of printed Ag tracks. They can broaden the range of substrates available for flexible electronic device fabrication while mitigating substrate damage risks. The choice between them depends on the specific application and the substrate used.

2.
J Colloid Interface Sci ; 641: 903-915, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36972625

ABSTRACT

HYPOTHESIS: Adhesion between particles and a filter fiber is an important process of the filtration as it dictates the process of separation and in the following the detachment process of particles during filter regeneration. In addition to the shear stress that a new polymeric stretchable filter fiber implements into the particulate structure, the elongation of the substrate (fiber) is also expected to cause a structural change in the surface of the polymer. Thus, the changed contact area and surface energy could affect the adhesion force between particles and fibers. EXPERIMENTS: Systematic measurements of adhesion forces between a single particle and the stretchable substrate were performed using Atomic Force Microscope (AFM). The substrate surface characteristics (roughness) was changed directly beneath the modified measurement head using piezo-motors to achieve stepless elongation state. Polystyrene particles and particles made of Spheriglass were applied. FINDINGS: In the experiments, a reduced adhesion force between the particles and the filter fiber was found for a new high range of substrate roughness and peak-to-peak distance, in which the Rabinovich model has not been used before [1]. Further, the influence of high and low energy surface particulate material was evaluated to understand the detachment process in the new real adaptive filter and in DEM-simulation.

3.
ACS Omega ; 7(21): 17620-17631, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664577

ABSTRACT

Initial bacterial adhesion to solid surfaces is influenced by a multitude of different factors, e.g., roughness and stiffness, topography on the micro- and nanolevel, as well as chemical composition and wettability. Understanding the specific influences and possible interactive effects of all of these factors individually could lead to guidance on bacterial adhesion and prevention of unfavorable consequences like medically relevant biofilm formation. On this way, the aim of the present study was to identify the specific influence of the available surface area on the adhesion of clinically relevant bacterial strains with different membrane properties: Gram-positive Staphylococcus aureus and Gram-negative Aggregatibacter actinomycetemcomitans. As model surfaces, silicon nanopillar specimens with different spacings were fabricated using electron beam lithography and cryo-based reactive ion etching techniques. Characterization by scanning electron microscopy and contact angle measurement revealed almost defect-free highly ordered nanotopographies only varying in the available surface area. Bacterial adhesion forces to these specimens were quantified by means of single-cell force spectroscopy exploiting an atomic force microscope connected to a microfluidic setup (FluidFM). The nanotopographical features reduced bacterial adhesion strength by reducing the available surface area. In addition, the strain-specific interaction in detail depended on the bacterial cell's elasticity and deformability as well. Analyzed by confocal laser scanning microscopy, the obtained results on bacterial adhesion forces could be linked to the subsequent biofilm formation on the different topographies. By combining two cutting-edge technologies, it could be demonstrated that the overall bacterial adhesion strength is influenced by both the simple physical interaction with the underlying nanotopography and its available surface area as well as the deformability of the cell.

4.
Nanomaterials (Basel) ; 10(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218132

ABSTRACT

Artificial intelligence (AI) has emerged as a powerful set of tools for engineering innovative materials. However, the AI-aided design of materials textures has not yet been researched in depth. In order to explore the potentials of AI for discovering innovative biointerfaces and engineering materials surfaces, especially for biomedical applications, this study focuses on the control of wettability through design-controlled hierarchical surfaces, whose design is supported and its performance predicted thanks to adequately structured and trained artificial neural networks (ANN). The authors explain the creation of a comprehensive library of microtextured surfaces with well-known wettability properties. Such a library is processed and employed for the generation and training of artificial neural networks, which can predict the actual wetting performance of new design biointerfaces. The present research demonstrates that AI can importantly support the engineering of innovative hierarchical or multiscale surfaces when complex-to-model properties and phenomena, such as wettability and wetting, are involved.

5.
Opt Express ; 28(9): 13423-13431, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403817

ABSTRACT

We present design and manufacture of a 3D printed varifocal freeform optics. The optical refraction power can be tuned continuously by mutual rotation of two helically shaped lens bodies of azimuthally varying curvatures. Since no additional space for axial or lateral lens movement is required, rotation optics allow for a highly compact design of varifocal optics. Manufacturing of the optics was conducted by means of a high-resolution additive manufacturing process. Results of tactile surface measurements are presented as well as imaging through the lens.

6.
Mater Today Bio ; 6: 100053, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32462138

ABSTRACT

The traditional pipeline of hydrogel development includes individual one-by-one synthesis and characterization of hydrogels. This approach is associated with the disadvantages of low-throughput and high cost. As an alternative approach to classical one-by-one synthesis, high-throughput development of hydrogels is still tremendously under-represented in the field of responsive material development, despite the urgent requirement for such techniques. Here, we report a platform that combines highly miniaturized hydrogel synthesis with screening for responsive properties in a high-throughput manner. The platform comprises a standard glass slide patterned with 1 â€‹× â€‹1 â€‹mm hydrophilic regions separated by superhydrophobic liquid-impermeable barriers, thus allowing deposition of various precursor solutions onto the hydrophilic spots without cross-contamination. The confinement of these solutions provided by the hydrophilic/superhydrophobic pattern allows encapsulation of cells within the hydrogel, and enables variation in hydrogel height and width. We have also proved the proper mixing of chemicals within the nanoliter-sized droplets. We have successfully implemented this platform for the synthesis of hydrogels, constructing 53 unique hydrogels, to demonstrate the versatility and utility of the platform. Photodegradation studies were performed on 20 hydrogels, revealing structure/function relationships between the hydrogel composition and photodegradability, and covering the range of degradability from non-degradable to rapidly degradable materials.

7.
Micromachines (Basel) ; 12(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396871

ABSTRACT

3D-inkjet-printing is just beginning to take off in the optical field. Advantages of this technique include its fast and cost-efficient fabrication without tooling costs. However, there are still obstacles preventing 3D inkjet-printing from a broad usage in optics, e.g., insufficient form fidelity. In this article, we present the formulation of a digital twin by the enhancement of an optical model by integrating geometrical measurement data. This approach strengthens the high-precision 3D printing process to fulfil optical precision requirements. A process flow between the design of freeform components, fabrication by inkjet printing, the geometrical measurement of the fabricated optical surface, and the feedback of the measurement data into the simulation model was developed, and its interfaces were defined. The evaluation of the measurements allowed for the adaptation of the printing process to compensate for process errors and tolerances. Furthermore, the performance of the manufactured component was simulated and compared with the nominal performance, and the enhanced model could be used for sensitivity analysis. The method was applied to a highly complex helical surface that allowed for the adjustment of the optical power by rotation. We show that sensitivity analysis could be used to define acceptable tolerance budgets of the process.

8.
High Throughput ; 8(2)2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30934705

ABSTRACT

Peptide microarrays are a fast-developing field enabling the mapping of linear epitopes in the immune response to vaccinations or diseases and high throughput studying of protein-protein interactions. In this respect, a rapid label-free measurement of protein layer topographies in the array format is of great interest but is also a great challenge due to the extremely low aspect ratios of the peptide spots. We have demonstrated the potential of vertical scanning interferometry (VSI) for a detailed morphological analysis of peptide arrays and binding antibodies. The VSI technique is shown to scan an array area of 5.1 square millimeters within 3⁻4 min at a resolution of 1.4 µm lateral and 0.1 nm vertical in the full automation mode. Topographies obtained by VSI do match the one obtained by AFM measurements, demonstrating the accuracy of the technique. A detailed topology of peptide-antibody layers on single spots was measured. Two different measurement regions are distinguished according to the antibody concentration. In the case of weakly diluted serum, the thickness of the antibody layer is independent of the serum dilution and corresponds to the physical thickness of the accumulated antibody layer. In strongly diluted serum, the thickness measured via VSI is linearly proportional to the serum dilution.

9.
ACS Appl Mater Interfaces ; 11(4): 4480-4487, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30645094

ABSTRACT

Undesired growth of biofilms represents a fundamental problem for all surfaces in long-term contact with aqueous media. Mature biofilms resist most biocide treatments and often are a pathogenic threat. One way to prevent biofilm growth on surfaces is by using slippery liquid-infused porous surfaces (SLIPS). SLIPS consist of a porous substrate which is infused with a lubricant immiscible with the aqueous medium in which the bacteria are suspended. Because of the lubricant, bacteria cannot attach to the substrate surface and thus formation of the biofilm is prevented. For this purpose, we manufactured substrates with different porosity and surface roughness values via UV-initiated free-radical polymerization in Fluoropor. Fluoropor is a class of highly fluorinated bulk-porous polymers with tunable porosity, which we recently introduced. We investigated the growth of the biofilm on the substrates, showing that a reduced surface roughness is beneficial for the reduction of biofilm growth. Samples of low roughness effectively reduced Pseudomonas aeruginosa biofilm growth for 7 days in a flow chamber experiment. The low-roughness samples also become transparent when infused with the lubricant, making such surfaces ideal for real-time observation of biofilm growth by optical examination.


Subject(s)
Biofilms/growth & development , Polymers/chemistry , Polymerization , Polymers/pharmacology , Porosity , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development
10.
Beilstein J Nanotechnol ; 9: 2618-2627, 2018.
Article in English | MEDLINE | ID: mdl-30416912

ABSTRACT

Lizards of the genus Scincus are widely known under the common name sandfish due to their ability to swim in loose, aeolian sand. Some studies report that this fascinating property of sandfish is accompanied by unique tribological properties of their skin such as ultra-low adhesion, friction and wear. The majority of these reports, however, is based on experiments conducted with a non-standard granular tribometer. Here, we characterise microscopic adhesion, friction and wear of single sandfish scales by atomic force microscopy. The analysis of frictional properties with different types of probes (sharp silicon tips, spherical glass tips and sand debris) demonstrates that the tribological properties of sandfish scales on the microscale are not exceptional if compared to snake scales or technical surfaces such as aluminium, Teflon, or highly oriented pyrolytic graphite.

11.
Langmuir ; 31(40): 11105-12, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26401759

ABSTRACT

In this work we experimentally and theoretically analyze the detachment of microscopic polystyrene beads from different self-assembled monolayer (SAM) surfaces in a shear flow in order to develop a mechanistic model for the removal of cells from surfaces. The detachment of the beads from the surface is treated as a thermally activated process applying an Arrhenius Ansatz to determine the activation barrier and attempt frequency of the rate determing step in bead removal. The statistical analysis of the experimental shear detachment data obtained in phosphate-buffered saline buffer results in an activation energy around 20 kJ/mol, which is orders of magnitude lower than the adhesion energy measured by atomic force microscopy (AFM). The same order of magnitude for the adhesion energy measured by AFM is derived from ab initio calculations of the van der Waals interaction energy between the polystyrene beads and the SAM-covered gold surface. We conclude that the rate determing step for detachment of the beads is the initiation of rolling on the surface (overcoming static friction) and not physical detachment, i.e., lifting the particle off the surface.


Subject(s)
Polystyrenes/chemistry , Shear Strength , Microscopy, Atomic Force , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...