Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 119(11): 2089-2105, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37052590

ABSTRACT

AIMS: Haploinsufficiency of the chromo-domain protein CHD7 underlies most cases of CHARGE syndrome, a multisystem birth defect including congenital heart malformation. Context specific roles for CHD7 in various stem, progenitor, and differentiated cell lineages have been reported. Previously, we showed severe defects when Chd7 is absent from cardiopharyngeal mesoderm (CPM). Here, we investigate altered gene expression in the CPM and identify specific CHD7-bound target genes with known roles in the morphogenesis of affected structures. METHODS AND RESULTS: We generated conditional KO of Chd7 in CPM and analysed cardiac progenitor cells using transcriptomic and epigenomic analyses, in vivo expression analysis, and bioinformatic comparisons with existing datasets. We show CHD7 is required for correct expression of several genes established as major players in cardiac development, especially within the second heart field (SHF). We identified CHD7 binding sites in cardiac progenitor cells and found strong association with histone marks suggestive of dynamically regulated enhancers during the mesodermal to cardiac progenitor transition of mESC differentiation. Moreover, CHD7 shares a subset of its target sites with ISL1, a pioneer transcription factor in the cardiogenic gene regulatory network, including one enhancer modulating Fgf10 expression in SHF progenitor cells vs. differentiating cardiomyocytes. CONCLUSION: We show that CHD7 interacts with ISL1, binds ISL1-regulated cardiac enhancers, and modulates gene expression across the mesodermal heart fields during cardiac morphogenesis.


Subject(s)
CHARGE Syndrome , DNA-Binding Proteins , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , CHARGE Syndrome/genetics , CHARGE Syndrome/metabolism , Enhancer Elements, Genetic , Heart , Myocytes, Cardiac/metabolism , Gene Expression , Gene Expression Regulation, Developmental , DNA Helicases/genetics , DNA Helicases/metabolism
2.
Methods Mol Biol ; 2438: 231-250, 2022.
Article in English | MEDLINE | ID: mdl-35147946

ABSTRACT

Epithelial cardiac progenitor cells of the second heart field (SHF) contribute to growth of the vertebrate heart tube by progressive addition of cells from the dorsal pericardial wall to the cardiac poles. Perturbation of SHF development, including defects in apicobasal or planar polarity, results in shortening of the heart tube and a spectrum of congenital heart defects. Here, we provide detailed protocols for fixed section and wholemount immunofluorescence and live imaging approaches to studying the epithelial properties of cardiac progenitors in the dorsal pericardial wall during mouse heart development. Whole-embryo culture and electroporation methods are also presented, allowing for pharmacological and genetic perturbation of SHF development, as well as image analysis approaches to quantify cell features across the progenitor cell epithelium. These protocols are broadly applicable to the study of epithelia in the early embryo.


Subject(s)
Embryo, Mammalian , Heart , Animals , Epithelium , Gene Expression Regulation, Developmental , Mice , Organogenesis , Pericardium , Stem Cells
3.
Hum Mol Genet ; 27(21): 3747-3760, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30016433

ABSTRACT

The arterial and venous poles of the mammalian heart are hotspots of congenital heart defects (CHD) such as those observed in 22q11.2 deletion (or DiGeorge) and Holt-Oram syndromes. These regions of the heart are derived from late differentiating cardiac progenitor cells of the Second Heart Field (SHF) located in pharyngeal mesoderm contiguous with the elongating heart tube. The T-box transcription factor Tbx1, encoded by the major 22q11.2 deletion syndrome gene, regulates SHF addition to both cardiac poles from a common progenitor population. Despite the significance of this cellular addition the mechanisms regulating the deployment of common progenitor cells to alternate cardiac poles remain poorly understood. Here we demonstrate that Tbx5, mutated in Holt-Oram syndrome and essential for venous pole development, is activated in Tbx1 expressing cells in the posterior region of the SHF at early stages of heart tube elongation. A subset of the SHF transcriptional program, including Tbx1 expression, is subsequently downregulated in Tbx5 expressing cells, generating a transcriptional boundary between Tbx1-positive arterial pole and Tbx5-positive venous pole progenitor cell populations. We show that normal downregulation of the definitive arterial pole progenitor cell program in the posterior SHF is dependent on both Tbx1 and Tbx5. Furthermore, retinoic acid (RA) signaling is required for Tbx5 activation in Tbx1-positive cells and blocking RA signaling at the time of Tbx5 activation results in atrioventricular septal defects at fetal stages. Our results reveal sequential steps of cardiac progenitor cell patterning and provide mechanistic insights into the origin of common forms of CHD.


Subject(s)
Abnormalities, Multiple/metabolism , Coronary Vessels/metabolism , DiGeorge Syndrome/metabolism , Heart Defects, Congenital/metabolism , Heart Septal Defects, Atrial/metabolism , Lower Extremity Deformities, Congenital/metabolism , Signal Transduction , Stem Cells/metabolism , T-Box Domain Proteins/metabolism , Tretinoin/metabolism , Upper Extremity Deformities, Congenital/metabolism , Abnormalities, Multiple/genetics , Animals , DiGeorge Syndrome/genetics , Gene Expression Regulation, Developmental , Heart Defects, Congenital/genetics , Heart Septal Defects/genetics , Heart Septal Defects/metabolism , Heart Septal Defects, Atrial/genetics , Lower Extremity Deformities, Congenital/genetics , Mice , Mice, Transgenic , Upper Extremity Deformities, Congenital/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...