Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38746203

ABSTRACT

In a continuing effort to understand reaction mechanisms of terpene synthases catalyzing initial anti-Markovnikov cyclization reactions, we solved the X-ray crystal structure of (+)-caryolan-1-ol synthase (CS) from Streptomyces griseus , with and without an inactive analog of the FPP substrate, 2-fluorofarnesyl diphosphate (2FFPP), bound in the active site of the enzyme. The CS-2FFPP complex was solved to 2.65 Å resolution and showed the ligand in a linear, elongated orientation, incapable of undergoing the initial cyclization event to form a bond between carbons C1 and C11. Intriguingly, the apo CS structure (2.2 Å) also had electron density in the active site, in this case density that was well fit with a curled-up tetraethylene glycol molecule presumably recruited from the crystallization medium. The density was also well fit by a molecule of farnesene suggesting that the structure may mimic an intermediate along the reaction coordinate. The curled-up conformation of tetraethylene glycol was accompanied by dramatic rotamer shifts among active-site residues. Most notably, W56 was observed to undergo a 90° rotation between the 2FFPP complex and apo-enzyme structures, suggesting that it contributes to steric interactions that help curl the tetraethylene glycol molecule in the active site, and by extension perhaps also a derivative of the FPP substrate in the normal course of the cyclization reaction. In support of this proposal, the CS W56L variant lost the ability to cyclize the FPP substrate and produced only the linear terpene products farnesol and α- and ß-farnesene.

2.
Cell Rep ; 43(4): 114035, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573859

ABSTRACT

Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.


Subject(s)
Bombyx , Animals , Ligands , Bombyx/metabolism , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Binding Sites , Amino Acid Sequence , Models, Molecular , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/chemistry , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry
3.
J Mol Evol ; 92(2): 181-206, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502220

ABSTRACT

Ancestral sequence reconstruction (ASR) is a phylogenetic method widely used to analyze the properties of ancient biomolecules and to elucidate mechanisms of molecular evolution. Despite its increasingly widespread application, the accuracy of ASR is currently unknown, as it is generally impossible to compare resurrected proteins to the true ancestors. Which evolutionary models are best for ASR? How accurate are the resulting inferences? Here we answer these questions using a cross-validation method to reconstruct each extant sequence in an alignment with ASR methodology, a method we term "extant sequence reconstruction" (ESR). We thus can evaluate the accuracy of ASR methodology by comparing ESR reconstructions to the corresponding known true sequences. We find that a common measure of the quality of a reconstructed sequence, the average probability, is indeed a good estimate of the fraction of correct amino acids when the evolutionary model is accurate or overparameterized. However, the average probability is a poor measure for comparing reconstructions from different models, because, surprisingly, a more accurate phylogenetic model often results in reconstructions with lower probability. While better (more predictive) models may produce reconstructions with lower sequence identity to the true sequences, better models nevertheless produce reconstructions that are more biophysically similar to true ancestors. In addition, we find that a large fraction of sequences sampled from the reconstruction distribution may have fewer errors than the single most probable (SMP) sequence reconstruction, despite the fact that the SMP has the lowest expected error of all possible sequences. Our results emphasize the importance of model selection for ASR and the usefulness of sampling sequence reconstructions for analyzing ancestral protein properties. ESR is a powerful method for validating the evolutionary models used for ASR and can be applied in practice to any phylogenetic analysis of real biological sequences. Most significantly, ESR uses ASR methodology to provide a general method by which the biophysical properties of resurrected proteins can be compared to the properties of the true protein.


Subject(s)
Biological Evolution , Proteins , Phylogeny , Proteins/genetics , Proteins/chemistry , Evolution, Molecular , Amino Acids
4.
bioRxiv ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38187590

ABSTRACT

Gustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect Olfactory Receptors (ORs). Upon fructose binding, BmGr9's ion channel gate opens through helix S7b movements. In contrast to ORs, BmGR9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also unlike ORs, fructose binding by BmGr9 involves helix S5 and a binding pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with distinct ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.

5.
Nature ; 603(7901): 528-535, 2022 03.
Article in English | MEDLINE | ID: mdl-35236984

ABSTRACT

Macromolecular function frequently requires that proteins change conformation into high-energy states1-4. However, methods for solving the structures of these functionally essential, lowly populated states are lacking. Here we develop a method for high-resolution structure determination of minorly populated states by coupling NMR spectroscopy-derived pseudocontact shifts5 (PCSs) with Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion6 (PCS-CPMG). Our approach additionally defines the corresponding kinetics and thermodynamics of high-energy excursions, thereby characterizing the entire free-energy landscape. Using a large set of simulated data for adenylate kinase (Adk), calmodulin and Src kinase, we find that high-energy PCSs accurately determine high-energy structures (with a root mean squared deviation of less than 3.5 angström). Applying our methodology to Adk during catalysis, we find that the high-energy excursion involves surprisingly small openings of the AMP and ATP lids. This previously unresolved high-energy structure solves a longstanding controversy about conformational interconversions that are rate-limiting for catalysis. Primed for either substrate binding or product release, the high-energy structure of Adk suggests a two-step mechanism combining conformational selection to this state, followed by an induced-fit step into a fully closed state for catalysis of the phosphoryl-transfer reaction. Unlike other methods for resolving high-energy states, such as cryo-electron microscopy and X-ray crystallography, our solution PCS-CPMG approach excels in cases involving domain rearrangements of smaller systems (less than 60 kDa) and populations as low as 0.5%, and enables the simultaneous determination of protein structure, kinetics and thermodynamics while proteins perform their function.


Subject(s)
Adenylate Kinase , Adenylate Kinase/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Thermodynamics
6.
Elife ; 112022 03 23.
Article in English | MEDLINE | ID: mdl-35319463

ABSTRACT

Multi-wavelength single-molecule fluorescence colocalization (CoSMoS) methods allow elucidation of complex biochemical reaction mechanisms. However, analysis of CoSMoS data is intrinsically challenging because of low image signal-to-noise ratios, non-specific surface binding of the fluorescent molecules, and analysis methods that require subjective inputs to achieve accurate results. Here, we use Bayesian probabilistic programming to implement Tapqir, an unsupervised machine learning method that incorporates a holistic, physics-based causal model of CoSMoS data. This method accounts for uncertainties in image analysis due to photon and camera noise, optical non-uniformities, non-specific binding, and spot detection. Rather than merely producing a binary 'spot/no spot' classification of unspecified reliability, Tapqir objectively assigns spot classification probabilities that allow accurate downstream analysis of molecular dynamics, thermodynamics, and kinetics. We both quantitatively validate Tapqir performance against simulated CoSMoS image data with known properties and also demonstrate that it implements fully objective, automated analysis of experiment-derived data sets with a wide range of signal, noise, and non-specific binding characteristics.


Subject(s)
Image Processing, Computer-Assisted , Unsupervised Machine Learning , Bayes Theorem , Fluorescence , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Reproducibility of Results
7.
Protein Sci ; 30(10): 2057-2068, 2021 10.
Article in English | MEDLINE | ID: mdl-34218472

ABSTRACT

Proteins evolve under a myriad of biophysical selection pressures that collectively control the patterns of amino acid substitutions. These evolutionary pressures are sufficiently consistent over time and across protein families to produce substitution patterns, summarized in global amino acid substitution matrices such as BLOSUM, JTT, WAG, and LG, which can be used to successfully detect homologs, infer phylogenies, and reconstruct ancestral sequences. Although the factors that govern the variation of amino acid substitution rates have received much attention, the influence of thermodynamic stability constraints remains unresolved. Here we develop a simple model to calculate amino acid substitution matrices from evolutionary dynamics controlled by a fitness function that reports on the thermodynamic effects of amino acid mutations in protein structures. This hybrid biophysical and evolutionary model accounts for nucleotide transition/transversion rate bias, multi-nucleotide codon changes, the number of codons per amino acid, and thermodynamic protein stability. We find that our theoretical model accurately recapitulates the complex yet universal pattern observed in common global amino acid substitution matrices used in phylogenetics. These results suggest that selection for thermodynamically stable proteins, coupled with nucleotide mutation bias filtered by the structure of the genetic code, is the primary driver behind the global amino acid substitution patterns observed in proteins throughout the tree of life.


Subject(s)
Amino Acid Substitution , Evolution, Molecular , Models, Genetic , Protein Conformation , Proteins , Proteins/chemistry , Proteins/genetics , Thermodynamics
8.
Biochemistry ; 57(45): 6434-6442, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30358994

ABSTRACT

The malarial pathogen Plasmodium falciparum ( Pf) is a member of the Apicomplexa, which independently evolved a highly specific lactate dehydrogenase (LDH) from an ancestral malate dehydrogenase (MDH) via a five-residue insertion in a key active site loop. PfLDH is widely considered an attractive drug target because of its unique active site. The conservation of the apicomplexan loop suggests that a precise insertion sequence was required for the evolution of LDH specificity. Aside from a single critical tryptophan, W107f, the functional and structural roles of residues in the loop are currently unknown. Here we show that the loop is remarkably robust to mutation, as activity is resilient to radical perturbations of both loop identity and length. Thus, alternative insertions could have evolved LDH specificity as long as they contained a tryptophan in the proper location. PfLDH likely has great potential to develop resistance to drugs designed to target its distinctive active site loop.


Subject(s)
L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , Plasmodium falciparum/enzymology , Protein Conformation , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , L-Lactate Dehydrogenase/genetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Phylogeny , Sequence Homology
9.
Biochemistry ; 56(43): 5812-5822, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28976747

ABSTRACT

RhoPDE is a type I rhodopsin/phosphodiesterase gene fusion product from the choanoflagellate Salpingoeca rosetta. The gene was discovered around the time that a similar type I rhodopsin/guanylyl cyclase fusion protein, RhoGC, was shown to control phototaxis of an aquatic fungus through a cGMP signaling pathway. RhoPDE has potential as an optogenetic tool catalyzing the hydrolysis of cyclic nucleotides. Here we provide an expression and purification system for RhoPDE, as well as a crystal structure of the C-terminal phosphodiesterase catalytic domain. We show that RhoPDE contains an even number of transmembrane segments, with N- and C-termini both located on the cytoplasmic surface of the cell membrane. The purified protein exhibits an absorption maximum at 490 nm in the dark state, which shifts to 380 nm upon exposure to light. The protein acts as a cGMP-selective phosphodiesterase. However, the activity does not appear to be modulated by light. The protein is also active with cAMP as a substrate, but with a roughly 5-7-fold lower kcat. A truncation consisting solely of the phosphodiesterase domain is also active with a kcat for cGMP roughly 6-9-fold lower than that of the full-length protein. The isolated PDE domain was crystallized, and the X-ray structure showed the protein to be a dimer similar to human PDE9. We anticipate that the purification system introduced here will enable further structural and biochemical experiments to improve our understanding of the function and mechanism of this unique fusion protein.


Subject(s)
Choanoflagellata/enzymology , Phosphoric Diester Hydrolases , Protozoan Proteins , Choanoflagellata/genetics , Crystallography, X-Ray , Gene Expression , Humans , Phosphoric Diester Hydrolases/biosynthesis , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/isolation & purification , Protein Domains , Protozoan Proteins/biosynthesis , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
10.
J Biol Chem ; 292(25): 10379-10389, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28473465

ABSTRACT

RhoGC is a rhodopsin (Rho)-guanylyl cyclase (GC) gene fusion molecule that is central to zoospore phototaxis in the aquatic fungus Blastocladiella emersonii It has generated considerable excitement because of its demonstrated potential as a tool for optogenetic manipulation of cell-signaling pathways involving cyclic nucleotides. However, a reliable method for expressing and purifying RhoGC is currently lacking. We present here an expression and purification system for isolation of the full-length RhoGC protein expressed in HEK293 cells in detergent solution. The protein exhibits robust light-dependent guanylyl cyclase activity, whereas a truncated form lacking the 17- to 20-kDa N-terminal domain is completely inactive under identical conditions. Moreover, we designed several RhoGC mutants to increase the utility of the protein for optogenetic studies. The first class we generated has altered absorption spectra designed for selective activation by different wavelengths of light. Two mutants were created with blue-shifted (E254D, λmax = 390 nm; D380N, λmax = 506 nm) and one with red-shifted (D380E, λmax = 533 nm) absorption maxima relative to the wild-type protein (λmax = 527 nm). We also engineered a double mutant, E497K/C566D, that changes the enzyme to a specific, light-stimulated adenylyl cyclase that catalyzes the formation of cAMP from ATP. We anticipate that this expression/purification system and these RhoGC mutants will facilitate mechanistic and structural exploration of this important enzyme.


Subject(s)
Blastocladiomycota , Fungal Proteins , Gene Expression , Optogenetics/methods , Recombinant Fusion Proteins , Amino Acid Substitution , Blastocladiomycota/enzymology , Blastocladiomycota/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Mutation, Missense , Protein Domains , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
11.
Science ; 355(6322): 289-294, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28008087

ABSTRACT

With early life likely to have existed in a hot environment, enzymes had to cope with an inherent drop in catalytic speed caused by lowered temperature. Here we characterize the molecular mechanisms underlying thermoadaptation of enzyme catalysis in adenylate kinase using ancestral sequence reconstruction spanning 3 billion years of evolution. We show that evolution solved the enzyme's key kinetic obstacle-how to maintain catalytic speed on a cooler Earth-by exploiting transition-state heat capacity. Tracing the evolution of enzyme activity and stability from the hot-start toward modern hyperthermophilic, mesophilic, and psychrophilic organisms illustrates active pressure versus passive drift in evolution on a molecular level, refutes the debated activity/stability trade-off, and suggests that the catalytic speed of adenylate kinase is an evolutionary driver for organismal fitness.


Subject(s)
Adenylyl Cyclases/chemistry , Biocatalysis , Thermotolerance , Adenylyl Cyclases/classification , Adenylyl Cyclases/genetics , Evolution, Molecular , Hot Temperature , Kinetics , Mutation , Phylogeny
12.
Biochemistry ; 55(34): 4864-70, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27486845

ABSTRACT

The visual pigment rhodopsin is a G protein-coupled receptor that covalently binds its retinal chromophore via a Schiff base linkage to an active-site Lys residue in the seventh transmembrane helix. Although this residue is strictly conserved among all type II retinylidene proteins, we found previously that the active-site Lys in bovine rhodopsin (Lys296) can be moved to three other locations (G90K, T94K, S186K) while retaining the ability to form a pigment with retinal and to activate transducin in a light-dependent manner [ Devine et al. ( 2013 ) Proc. Natl. Acad. Sci. USA 110 , 13351 - 13355 ]. Because the active-site Lys is not functionally constrained to be in helix seven, it is possible that it could relocate within the protein, most likely via an evolutionary intermediate with two active-site Lys. Therefore, in this study we characterized potential evolutionary intermediates with two Lys in the active site. Four mutant rhodopsins were prepared in which the original Lys296 was left untouched and a second Lys residue was substituted for G90K, T94K, S186K, or F293K. All four constructs covalently bind 11-cis-retinal, form a pigment, and activate transducin in a light-dependent manner. These results demonstrate that rhodopsin can tolerate a second Lys in the retinal binding pocket and suggest that an evolutionary intermediate with two Lys could allow migration of the Schiff base Lys to a position other than the observed, highly conserved location in the seventh TM helix. From sequence-based searches, we identified two groups of natural opsins, insect UV cones and neuropsins, that contain Lys residues at two positions in their active sites and also have intriguing spectral similarities to the mutant rhodopsins studied here.


Subject(s)
Evolution, Molecular , Rhodopsin/chemistry , Rhodopsin/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites/genetics , Cattle , Lysine/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Photochemical Processes , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodopsin/metabolism , Schiff Bases/chemistry , Sequence Homology, Amino Acid
13.
Protein Sci ; 25(7): 1363-5, 2016 07.
Article in English | MEDLINE | ID: mdl-26971579

ABSTRACT

Presenilin is an integral membrane aspartate protease that regulates cellular processes by cleaving proteins within the cell membrane. The recent crystal structure of presenilin reveals a conspicuous pore in a bundle of nine α-helices, which was originally thought to adopt a novel protein fold. However, here I show that the presenilin fold is a variant of the ClC chloride channel/transporter fold. This observation may have important implications for presenilin's postulated biological role as a calcium leak channel.


Subject(s)
Chloride Channels/chemistry , Presenilins/chemistry , Animals , Crystallography, X-Ray , Models, Molecular , Protein Folding , Protein Structure, Secondary , Structure-Activity Relationship
14.
Protein Sci ; 25(7): 1319-31, 2016 07.
Article in English | MEDLINE | ID: mdl-26889885

ABSTRACT

Lactate and malate dehydrogenases (LDH and MDH) are homologous, core metabolic enzymes common to nearly all living organisms. LDHs have evolved convergently from MDHs at least four times, achieving altered substrate specificity by a different mechanism each time. For instance, the LDH of anaerobic trichomonad parasites recently evolved independently from an ancestral trichomonad MDH by gene duplication. LDH plays a central role in trichomonad metabolism by catalyzing the reduction of pyruvate to lactate, thereby regenerating the NAD+ required for glycolysis. Using ancestral reconstruction methods, we identified the biochemical and evolutionary mechanisms responsible for this convergent event. The last common ancestor of these enzymes was a highly specific MDH, similar to modern trichomonad MDHs. In contrast, the LDH lineage evolved promiscuous activity by relaxing specificity in a gradual process of neofunctionalization involving one highly detrimental substitution at the "specificity residue" (R91L) and many additional mutations of small effect. L91 has different functional consequences in LDHs and in MDHs, indicating a prominent role for epistasis. Crystal structures of modern-day and ancestral enzymes show that the evolution of substrate specificity paralleled structural changes in dimerization and α-helix orientation. The relatively small "specificity residue" of the trichomonad LDHs can accommodate a range of substrate sizes and may permit solvent to access the active site, both of which promote substrate promiscuity. The trichomonad LDHs present a multi-faceted counterpoint to the independent evolution of LDHs in other organisms and illustrate the diverse mechanisms by which protein function, structure, and stability coevolve.


Subject(s)
L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Trichomonadida/enzymology , Binding Sites , Crystallography, X-Ray , Dimerization , Evolution, Molecular , Gene Duplication , L-Lactate Dehydrogenase/chemistry , Malate Dehydrogenase/chemistry , Models, Molecular , Phylogeny , Protein Structure, Secondary , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Substrate Specificity
15.
Elife ; 32014 Jun 25.
Article in English | MEDLINE | ID: mdl-24966208

ABSTRACT

Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.


Subject(s)
Apicomplexa/enzymology , Evolution, Molecular , L-Lactate Dehydrogenase/chemistry , Catalytic Domain , Cryptosporidium parvum/enzymology , Epistasis, Genetic , Escherichia coli/metabolism , Malate Dehydrogenase/chemistry , Mutation , Phylogeny , Plasmodium falciparum/enzymology , Protein Binding , Protein Conformation , Rickettsia/enzymology , Toxoplasma/enzymology , Tryptophan/chemistry
16.
Mol Biol Evol ; 31(1): 85-95, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24077848

ABSTRACT

Rhodopsins are photochemically reactive membrane proteins that covalently bind retinal chromophores. Type I rhodopsins are found in both prokaryotes and eukaryotic microbes, whereas type II rhodopsins function as photoactivated G-protein coupled receptors (GPCRs) in animal vision. Both rhodopsin families share the seven transmembrane α-helix GPCR fold and a Schiff base linkage from a conserved lysine to retinal in helix G. Nevertheless, rhodopsins are widely cited as a striking example of evolutionary convergence, largely because the two families lack detectable sequence similarity and differ in many structural and mechanistic details. Convergence entails that the shared rhodopsin fold is so especially suited to photosensitive function that proteins from separate origins were selected for this architecture twice. Here we show, however, that the rhodopsin fold is not required for photosensitive activity. We engineered functional bacteriorhodopsin variants with novel folds, including radical noncircular permutations of the α-helices, circular permutations of an eight-helix construct, and retinal linkages relocated to other helices. These results contradict a key prediction of convergence and thereby provide an experimental attack on one of the most intractable problems in molecular evolution: how to establish structural homology for proteins devoid of discernible sequence similarity.


Subject(s)
Evolution, Molecular , Membrane Proteins/genetics , Rhodopsin/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Gene Expression , Halobacteriaceae/chemistry , Halobacteriaceae/genetics , Membrane Proteins/chemistry , Mutation , Protein Folding , Protein Structure, Secondary , Rhodopsin/chemistry
17.
Ann Appl Stat ; 7(2): 989-1009, 2013.
Article in English | MEDLINE | ID: mdl-24052809

ABSTRACT

We develop a Bayesian model for the alignment of two point configurations under the full similarity transformations of rotation, translation and scaling. Other work in this area has concentrated on rigid body transformations, where scale information is preserved, motivated by problems involving molecular data; this is known as form analysis. We concentrate on a Bayesian formulation for statistical shape analysis. We generalize the model introduced by Green and Mardia for the pairwise alignment of two unlabeled configurations to full similarity transformations by introducing a scaling factor to the model. The generalization is not straight-forward, since the model needs to be reformulated to give good performance when scaling is included. We illustrate our method on the alignment of rat growth profiles and a novel application to the alignment of protein domains. Here, scaling is applied to secondary structure elements when comparing protein folds; additionally, we find that one global scaling factor is not in general sufficient to model these data and, hence, we develop a model in which multiple scale factors can be included to handle different scalings of shape components.

18.
Nature ; 500(7464): 580-4, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23925112

ABSTRACT

Behavioural responses to temperature are critical for survival, and animals from insects to humans show strong preferences for specific temperatures. Preferred temperature selection promotes avoidance of adverse thermal environments in the short term and maintenance of optimal body temperatures over the long term, but its molecular and cellular basis is largely unknown. Recent studies have generated conflicting views of thermal preference in Drosophila, attributing importance to either internal or peripheral warmth sensors. Here we reconcile these views by showing that thermal preference is not a singular response, but involves multiple systems relevant in different contexts. We found previously that the transient receptor potential channel TRPA1 acts internally to control the slowly developing preference response of flies exposed to a shallow thermal gradient. We now find that the rapid response of flies exposed to a steep warmth gradient does not require TRPA1; rather, the gustatory receptor GR28B(D) drives this behaviour through peripheral thermosensors. Gustatory receptors are a large gene family, widely studied in insect gustation and olfaction, and are implicated in host-seeking by insect disease vectors, but have not previously been implicated in thermosensation. At the molecular level, GR28B(D) misexpression confers thermosensitivity upon diverse cell types, suggesting that it is a warmth sensor. These data reveal a new type of thermosensory molecule and uncover a functional distinction between peripheral and internal warmth sensors in this tiny ectotherm reminiscent of thermoregulatory systems in larger, endothermic animals. The use of multiple, distinct molecules to respond to a given temperature, as observed here, may facilitate independent tuning of an animal's distinct thermosensory responses.


Subject(s)
Avoidance Learning/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Hot Temperature , Receptors, Cell Surface/metabolism , Taste , Thermosensing/physiology , Animals , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Ion Channels , Receptors, Cell Surface/genetics , Signal Transduction , Smell , TRPA1 Cation Channel , TRPC Cation Channels/deficiency , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Thermoreceptors/cytology , Thermoreceptors/physiology , Thermosensing/genetics , Time Factors
19.
Proc Natl Acad Sci U S A ; 110(33): 13351-5, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23904486

ABSTRACT

Type I and type II rhodopsins share several structural features including a G protein-coupled receptor fold and a highly conserved active-site Lys residue in the seventh transmembrane segment of the protein. However, the two families lack significant sequence similarity that would indicate common ancestry. Consequently, the rhodopsin fold and conserved Lys are widely thought to have arisen from functional constraints during convergent evolution. To test for the existence of such a constraint, we asked whether it were possible to relocate the highly conserved Lys296 in the visual pigment bovine rhodopsin. We show here that the Lys can be moved to three other locations in the protein while maintaining the ability to form a pigment with 11-cis-retinal and activate the G protein transducin in a light-dependent manner. These results contradict the convergent hypothesis and support the homology of type I and type II rhodopsins by divergent evolution from a common ancestral protein.


Subject(s)
Catalytic Domain/genetics , Evolution, Molecular , Eye Proteins/chemistry , Models, Molecular , Protein Conformation , Rhodopsin/chemistry , Animals , Cattle , Eye Proteins/genetics , Lysine/chemistry , Models, Biological , Rhodopsin/genetics , Spectrophotometry, Ultraviolet , Transducin/metabolism
20.
J Struct Biol ; 183(3): 377-388, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23872434

ABSTRACT

We describe an implementation of maximum likelihood classification for single particle electron cryo-microscopy that is based on the FREALIGN software. Particle alignment parameters are determined by maximizing a joint likelihood that can include hierarchical priors, while classification is performed by expectation maximization of a marginal likelihood. We test the FREALIGN implementation using a simulated dataset containing computer-generated projection images of three different 70S ribosome structures, as well as a publicly available dataset of 70S ribosomes. The results show that the mixed strategy of the new FREALIGN algorithm yields performance on par with other maximum likelihood implementations, while remaining computationally efficient.


Subject(s)
Image Processing, Computer-Assisted , Software , Algorithms , Bayes Theorem , Computer Simulation , Cryoelectron Microscopy/methods , Escherichia coli , Likelihood Functions , Models, Molecular , Ribosome Subunits, Large, Bacterial/ultrastructure , Ribosome Subunits, Small, Bacterial/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...