Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 97(12): 5259-74, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23546423

ABSTRACT

AtoSC two-component system (TCS) upregulates the high-molecular weight poly-(R)-3-hydroxybutyrate (PHB) biosynthesis in recombinant phaCAB (+) Escherichia coli strains, with the Cupriavidus necator phaCAB operon. We report here that AtoSC upregulates also the copolymer P(3HB-co-3HV) biosynthesis in phaCAB (+) E. coli. Acetoacetate-induced AtoSC maximized P(3HB-co-3HV) to 1.27 g/l with a 3HV fraction of 25.5 % wt. and biopolymer content of 75 % w/w in a time-dependent process. The atoSC locus deletion in the ∆atoSC strains resulted in 4.5-fold P(3HB-co-3HV) reduction, while the 3HV fraction of the copolymer was restricted to only 6.4 % wt. The ∆atoSC phenotype was restored by extrachromosomal introduction of AtoSC. Deletion of the atoDAEB operon triggered a significant decrease in P(3HB-co-3HV) synthesis and 3HV content in ∆atoDAEB strains. However, the acetoacetate-induced AtoSC in those strains increased P(3HB-co-3HV) to 0.8 g/l with 21 % 3HV, while AtoC or AtoS expression increased P(3HB-co-3HV) synthesis 3.6- or 2.4-fold, respectively, upon acetoacetate. Complementation of the ∆atoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. Individual inhibition of ß-oxidation and mainly fatty acid biosynthesis pathways by acrylic acid or cerulenin, respectively, reduced P(3HB-co-3HV) biosynthesis. Under those conditions, introduction of atoSC or atoSCDAEB regulon was capable of upregulating biopolymer accumulation. Concurrent inhibition of both the fatty acid metabolic pathways eliminated P(3HB-co-3HV) production. P(3HB-co-3HV) upregulation in phaCAB (+) E. coli by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards biotechnologically improved polyhydroxyalkanoates biosynthesis.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Polyesters/metabolism , Regulon , Acetoacetates/metabolism , Cupriavidus necator/genetics , Gene Deletion , Genetic Complementation Test , Metabolic Engineering , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcriptional Activation , Up-Regulation
2.
Eur J Pharm Sci ; 47(1): 84-96, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22634222

ABSTRACT

Verapamil, diltiazem and nifedipine are Ca(2+)-channel blockers used in cardiovascular diseases. We report here that the Escherichia coli AtoSC signaling is inhibited by those blockers. AtoSC two-component system plays a pivotal role in sophisticated signaling networks in E. coli regulating processes implicated in bacterial homeostasis and pathogenicity. The Ca(2+)-channel blockers abrogated the in vitro full-length AtoS kinase autophosphorylation. However, they demonstrated no effect on the AtoS cytoplasmic form autophosphorylation. AtoC protected AtoS from verapamil or diltiazem but not from nifedipine, when the two constituents formed complex. The blockers did not affect the AtoS≈P to AtoC phosphotransfer. The blockers-mediated AtoSC inhibition was verified in vivo on the atoDAEB expression, which was inhibited only in AtoSC-expressing bacteria upon acetoacetate. The AtoS and AtoC protein or their genes transcription levels were unaffected by the blockers. Blockers demonstrated differential effects in the regulation of both the cytosolic- and most potently the membrane-bound-cPHB. Extracellular Ca(2+) counteracted the verapamil-mediated effect on cPHB only in atoSC(+) cells. Extracellular Ca(2+) reversed the diltiazem-mediated cPHB decreases in cells of both genetic backgrounds, yet a Ca(2+)-concentration dependent reversion was observed only in the AtoSC-regulated cPHB. Nifedipine caused a more pronounced cPHB down-regulation that was not reversed by extracellular Ca(2+). The AtoSC signaling inhibition by Ca(2+)-channel blockers used for human treatment, and their differential effects on cPHB-formed Ca(2+)-channels, signify their implications in bacterial-host interactions through the two-component signaling and could stimulate the design of Ca(2+)-channels blockers derivatives acting as inhibitors of two-component systems.


Subject(s)
Calcium Channel Blockers/pharmacology , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Protein Kinases/metabolism , Signal Transduction/drug effects , Acetoacetates/metabolism , Acyltransferases/metabolism , Calcium/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Down-Regulation/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/antagonists & inhibitors , Operon/drug effects , Phosphorylation/drug effects , Transcription, Genetic/drug effects
3.
Metab Eng ; 14(4): 354-65, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22484344

ABSTRACT

AtoSC two-component system plays a pivotal role in many regulatory indispensable Escherichia coli processes. AtoSCDAEB regulon, comprising the AtoSC system and the atoDAEB operon, regulates the short-chain fatty acids catabolism. We report here, that AtoSC up-regulates the high-molecular weight PHB biosynthesis, in recombinant phaCAB(+)E. coli, with the Cupriavidus necator phaCAB operon. PHB accumulation was maximized upon the acetoacetate-mediated induction of AtoSC, under glucose 1% w/v, resulting in a yield of 1.73 g/l with a biopolymer content of 64.5% w/w. The deletion of the atoSC locus, in the ΔatoSC strains, resulted in a 5 fold reduction of PHB accumulation, which was restored by the extrachromosomal introduction of the AtoSC system. The deletion of the atoDAEB operon triggered a significant decrease in PHB synthesis in ΔatoDAEB strains. However, the acetoacetate-induced AtoSC system in those strains increased PHB to 1.55 g/l, while AtoC expression increased PHB to 1.4 g/l upon acetoacetate. The complementation of the ΔatoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. The individual inhibition of ß-oxidation and mainly fatty-acid biosynthesis pathways by acrylic acid or cerulenin respectively, reduced PHB biosynthesis. Under those conditions the introduction of the atoSC locus or the atoSCDAEB regulon was capable to up-regulate the biopolymer accumulation. The concurrent inhibition of both the fatty acids metabolic pathways eliminated PHB production. PHB up-regulation in phaCAB(+)E. coli, by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay, provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards the biotechnologically improved polyhydroxyalkanoates biosynthesis.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Protein Kinases/metabolism , Regulon/physiology , Acetoacetates/metabolism , Acrylates/pharmacology , Cerulenin/pharmacology , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Escherichia coli/drug effects , Fatty Acids/biosynthesis , Gene Deletion , Genetic Loci , Glucose/metabolism , Operon/drug effects , Operon/genetics , Operon/physiology , Regulon/drug effects , Up-Regulation/drug effects , Up-Regulation/physiology
4.
Amino Acids ; 43(2): 833-44, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22083893

ABSTRACT

The AtoSC two-component system in Escherichia coli is a key regulator of many physiological processes. We report here the contribution of AtoSC in E. coli motility and chemotaxis. AtoSC locus deletion in ΔatoSC cells renders cells not motile or responsive against any chemoattractant or repellent independently of the AtoSC inducer's presence. AtoSC expression through plasmid complemented the ΔatoSC phenotype. Cells expressing either AtoS or AtoC demonstrated analogous motility and chemotactic phenotypes as ΔatoSC cells, independently of AtoSC inducer's presence. Mutations of AtoC phosphate-acceptor sites diminished or abrogated E. coli chemotaxis. trAtoC, the AtoC constitutive active form which lacks its receiver domain, up-regulated E. coli motility. AtoSC enhanced the transcription of the flhDC and fliAZY operons and to a lesser extent of the flgBCDEFGHIJKL operon. The AtoSC-mediated regulation of motility and chemotactic response required also the expression of the CheAY system. The AtoSC inducers enhanced the AtoSC-mediated motility and chemotaxis. Acetoacetate or spermidine further promoted the responses of only AtoSC-expressing cells, while Ca(2+) demonstrated its effects independently of AtoSC. Histamine regulated bacterial chemotaxis only in atoSC (+) cells in a concentration-dependent manner while reversed the AtoSC-mediated effects when added at high concentrations. The trAtoC-controlled motility effects were enhanced by acetoacetate or spermidine, but not by histamine. These data reveal that AtoSC system regulates the motility and chemotaxis of E. coli, participating in the transcriptional induction of the main promoters of the chemotactic regulon and modifying the motility and chemotactic phenotypes in an induction-dependent mechanism.


Subject(s)
DNA-Binding Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Protein Kinases/genetics , Regulon , Acetoacetates/chemistry , Amino Acid Substitution , Aspartic Acid/chemistry , Calcium/chemistry , Chemotactic Factors/chemistry , Chemotaxis/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Flagella , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Glycerol/chemistry , Histamine/chemistry , Operon , Phosphorylation , Protein Kinases/metabolism , Protein Processing, Post-Translational , Serine/chemistry , Spermidine/chemistry
5.
Front Biosci (Landmark Ed) ; 17(3): 1108-19, 2012 01 01.
Article in English | MEDLINE | ID: mdl-22201793

ABSTRACT

Histamine is a key mediator governing vital cellular processes in mammals beyond its decisive role in inflammation. Recent evidence implies additional actions in both eukaryotes and prokaryotes. Besides its function in host defense against bacterial infections, histamine elicits largely undefined actions in microorganisms that may contribute to bacteria-host interactions. Bacterial proliferation and adaptation are governed by sophisticated signal transduction networks, including the versatile two-component systems (TCSs) that comprise sensor histidine kinases and response regulators and rely on phosphotransfer mechanisms to exert their modulatory function. The AtoSC TCS regulates fundamental cellular processes such as short-chain fatty acid metabolism, poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis and chemotaxis in Escherichia coli. The implication of exogenous histamine in the AtoSC-mediated cPHB biosynthesis and in E. coli chemotactic behavior is indicative of a putative function of histamine in bacterial physiology. The data raise questions on the significance of histamine actions in bacteria-host symbiosis, dysbiosis and pathogenicity as well as on the possible consequences upon therapeutic administration of histamine receptor-targeting agents and in particular ligands of the recently identified immunomodulatory H4 receptor.


Subject(s)
Bacteria/metabolism , Histamine/metabolism , Signal Transduction , Bacteria/pathogenicity , Bacterial Physiological Phenomena , Virulence
6.
Cell Signal ; 23(8): 1327-37, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21443947

ABSTRACT

AtoSC two-component system participates in many indispensable processes of Escherichia coli. We report here that the AtoSC signal transduction is inhibited by established histidine kinase inhibitors. Closantel, RWJ-49815 and TNP-ATP belonging to different chemical classes of inhibitors, abrogated the in vitro AtoS kinase autophosphorylation. However, when AtoS was embedded in the membrane fractions, higher inhibitor concentrations were required for total inhibition. When AtoS interacted with AtoC forming complex, the intrinsic histidine kinase was protected by the response regulator, requiring increased inhibitors concentrations for partially AtoS autophosphorylation reduction. The inhibitors exerted an additional function on AtoSC, blocking the phosphotransfer from AtoS to AtoC, without however, affecting AtoC~P dephosphorylation. Their in vivo consequences through the AtoSC inhibition were elucidated on atoDAEB operon expression, which was inhibited only in AtoSC-expressing bacteria where AtoSC was induced by acetoacetate or spermidine. The inhibitor effects were extended on the AtoSC regulatory role on cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis. cPHB was decreased upon the blockers only in acetoacetate-induced AtoSC-expressing cells. Increased ATP amounts during bacterial growth reversed the inhibitory TNP-ATP-mediated effect on cPHB. The alteration of pivotal E. coli processes as an outcome of AtoSC inhibition, establish this system as a target of two-component systems inhibitors.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Signal Transduction/drug effects , DNA-Binding Proteins/metabolism , Escherichia coli/enzymology , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Guanidines/pharmacology , Histidine Kinase , Phosphorylation , Trityl Compounds/pharmacology
7.
Biochim Biophys Acta ; 1810(5): 561-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21295116

ABSTRACT

BACKGROUND: We have shown previously that AtoSC two-component system regulates the biosynthesis of E. coli cPHB [complexed poly-(R)-3-hydroxybutyrate]. METHODS: The AtoSC involvement on fatty acids metabolism, towards cPHB synthesis, was studied using cPHB determination, gene expression, and fatty acid metabolic pathways inhibitors. RESULTS: Deletion of the atoDAEB operon from the E. coli genome resulted in a consistent reduction of cPHB accumulation. When in ΔatoDAEB cells, the atoDAEB operon and the AtoSC system were introduced extrachromosomally, a significant enhancement of cPHB levels was observed. Moreover, the introduction of a plasmid with atoSC genes regulated positively cPHB biosynthesis. A lesser cPHB enhancement was triggered when plasmids carrying either atoS or atoC were introduced. The intracellular distribution of cPHB was regulated by AtoSC or AtoC according to the inducer (acetoacetate or spermidine). Blockage of ß-oxidation by acrylic acid reduced cPHB levels, suggesting the involvement of this pathway in cPHB synthesis; however, the overproduction of AtoSC or its constituents separately resulted in cPHB enhancement. Inhibition of fatty acid biosynthesis by cerulenin resulted to a major cPHB reduction, indicating the contribution of this pathway in cPHB production. Inhibition of both ß-oxidation and fatty acid biosynthesis reduced dramatically cPHB, suggesting the contribution of both pathways in cPHB biosynthesis. CONCLUSIONS: Short fatty acid catabolism (atoDAEB operon) and fatty acids metabolic pathways participate in cPHB synthesis through the involvement of AtoSC system. GENERAL SIGNIFICANCE: The involvement of the AtoSC system in the fatty acids metabolic pathways interplay towards cPHB biosynthesis provides additional perceptions of AtoSC role on E. coli regulatory biochemical processes.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Fatty Acids/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Protein Kinases/metabolism , Acetoacetates/pharmacology , Acrylates/pharmacology , Cerulenin/pharmacology , DNA-Binding Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fatty Acid Synthesis Inhibitors/pharmacology , Immunoblotting , Models, Biological , Oxidation-Reduction/drug effects , Plasmids/genetics , Protein Kinases/genetics , Spermidine/pharmacology , Time Factors
8.
Amino Acids ; 40(2): 421-30, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20563612

ABSTRACT

The AtoSC two-component system in E. coli consists of the AtoS sensor kinase and the AtoC response regulator. It regulates positively the transcriptional activation of atoDAEB operon, encoding enzymes involved in short-chain fatty acid catabolism upon acetoacetate-mediated induction. AtoSC acting on atoDAEB operon, regulates the biosynthesis and the intracellular distribution of short-chain poly-(R)-3-hydroxybutyrate (cPHB). A phosphorylation-incompetent AtoC form was constructed lacking its N-terminal receiver domain, trAtoC, to study the effects of AtoC domains on cPHB biosynthesis and atoDAEB operon regulation. Both cPHB biosynthesis and atoDAEB gene expression were regulated positively by trAtoC in the absence of any inducer in E. coli of both atoSC (+) and ΔatoSC genotypes. The presence of acetoacetate or spermidine further promoted these trAtoC actions. Competitive regulatory functions between the full length AtoC and trAtoC were observed referring to atoDAEB and cPHB targets as well as growth of trAtoC-overproducing atoSC (+) cells on butyrate as the sole carbon source. trAtoC in contrast to the wild-type AtoC presented different modes of cPHB and atoDAEB regulation in the presence of compounds involved in fatty acid metabolism including CoA-SH, acetyl-CoA, sodium acetate or 3-hydroxybutyryl-CoA. These data provide evidence for a role of the AtoC N-terminal receiver domain in regulating the biological activities of AtoSC as well as additional mechanisms of interactions between the AtoSC constituents including their established inducers or new effectors towards the accomplishment of the AtoSC TCS signal transduction.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Gene Expression Regulation, Bacterial , Protein Kinases/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Hydroxybutyrates/metabolism , Operon , Polyesters/metabolism , Protein Kinases/genetics , Protein Structure, Tertiary
9.
Biochem J ; 417(3): 667-72, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-18855762

ABSTRACT

Escherichia coli is exposed to wide extracellular concentrations of Ca2+, whereas the cytosolic levels of the ion are subject to stringent control and are implicated in many physiological functions. The present study shows that extracellular Ca2+ controls cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis through the AtoS-AtoC two-component system. Maximal cPHB accumulation was observed at higher [Ca2+]e (extracellular Ca2+ concentration) in AtoS-AtoC-expressing E. coli compared with their DeltaatoSC counterparts, in both cytosolic and membrane fractions. The reversal of EGTA-mediated down-regulation of cPHB biosynthesis by the addition of Ca2+ and Mg2+ was under the control of the AtoS-AtoC system. Moreover, the Ca2+-channel blocker verapamil reduced total and membrane-bound cPHB levels, the inhibitory effect being circumvented by Ca2+ addition only in atoSC+ bacteria. Histamine and compound 48/80 affected cPHB accumulation in a [Ca2+]e-dependent manner directed by the AtoS-AtoC system. In conclusion, these data provide evidence for the involvement of external Ca2+ on cPHB synthesis regulated by the AtoS-AtoC two-component system, thus linking Ca2+ with a signal transduction system, most probably through a transporter.


Subject(s)
Calcium/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Protein Kinases/metabolism , Escherichia coli/genetics , Signal Transduction
10.
Biochim Biophys Acta ; 1770(8): 1104-14, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17475408

ABSTRACT

Recent analysis revealed that, in Escherichia coli the AtoS-AtoC/Az two-component system (TCS) and its target atoDAEB operon regulate the biosynthesis of short-chain poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles, upon acetoacetate-mediated induction. We report here that spermidine further enhanced this effect, in E. coli that overproduces both components of the AtoS-AtoC/Az TCS, without altering their protein levels. However, bacteria that overproduce either AtoS or AtoC did not display this phenotype. The extrachromosomal introduction of AtoS-AtoC/Az in an E. coli DeltaatoSC strain restored cPHB biosynthesis to the level of the atoSC(+) cells, in the presence of the polyamine. Lack of enhanced cPHB production was observed in cells overproducing the TCS that did not have the atoDAEB operon. Spermidine attained the cPHB enhancement through the AtoC/Az response regulator phosphorylation, since atoC phosphorylation site mutants, which overproduce AtoS, accumulated less amounts of cPHB, compared to their wild-type counterparts. Exogenous addition of N(8)-acetyl-spermidine resulted in elevated amounts of cPHB but at lower levels than those attained upon spermidine addition. Furthermore, AtoS-AtoC/Az altered the intracellular distribution of cPHB according to the inducer recognized by the TCS. Overall, AtoS-AtoC/Az TCS was induced by spermidine to regulate both the biosynthesis and the intracellular distribution of cPHB in E. coli.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Protein Kinases/metabolism , Signal Transduction , Spermidine/pharmacology , Carrier Proteins/metabolism , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Hydroxybutyrates/metabolism , Models, Biological , Plasmids/genetics , Polyesters/metabolism , Protein Kinases/genetics , Signal Transduction/drug effects
11.
Biochim Biophys Acta ; 1760(6): 896-906, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16564134

ABSTRACT

The AtoS-AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E. coli. Increased amounts of cPHB were synthesized in E. coli upon exposure of the cells to acetoacetate, the inducer of the AtoS-AtoC two-component system. While E. coli that overproduce both components of the signal transduction system synthesize higher quantities of cPHB (1.5-4.5 fold), those that overproduce either AtoS or AtoC alone do not display such a phenotype. Lack of enhanced cPHB production was also observed in cells overexpressing AtoS and phosphorylation-impaired AtoC mutants. The results were not affected by the nature of the carbon source used, i.e., glucose, acetate or acetoacetate. An E. coli strain with a deletion in the atoS-atoC locus (delta atoSC) synthesized lower amounts of cPHB compared to wild-type cells. When the delta atoSC strain was transformed with a plasmid carrying a 6.4-kb fragment encoding the AtoS-AtoC system, cPHB biosynthesis was restored to the level of the atoSC+ cells. Introduction of a multicopy plasmid carrying a functional atoDAEB operon, but not one with a promoterless operon, resulted in increased cPHB synthesis only in atoSC+ cells in the presence of acetoacetate. These results indicate that the presence of both a functional AtoS-AtoC two-component signal transduction system and a functional atoDAEB operon is critical for the enhanced cPHB biosynthesis in E. coli.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Hydroxybutyrates/metabolism , Protein Kinases/metabolism , Signal Transduction , Acetoacetates/pharmacology , Carbon/metabolism , Gene Deletion , Models, Biological , Operon/genetics , Phosphorylation , Plasmids/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...