Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 73(3): 46, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349444

ABSTRACT

Immunophenotypic analysis of breast cancer microenvironment is gaining attraction as a clinical tool improving breast cancer patient stratification. The aim of this study is to evaluate proliferating CD8 + including CD8 + TCF1 + Τ cells along with PD-L1 expressing tissue-associated macrophages among different breast cancer subtypes. A well-characterized cohort of 791 treatment-naïve breast cancer patients was included. The analysis demonstrated a distinct expression pattern among breast cancer subtypes characterized by increased CD8 + , CD163 + and CD163 + PD-L1 + cells along with high PD-L1 status and decreased fraction of CD8 + Ki67 + T cells in triple negative (TNBC) and HER2 + compared to luminal tumors. Kaplan-Meier and Cox univariate survival analysis revealed that breast cancer patients with high CD8 + , CD8 + Ki67 + , CD8 + TCF1 + cells, PD-L1 score and CD163 + PD-L1 + cells are likely to have a prolonged relapse free survival, while patients with high CD163 + cells have a worse prognosis. A differential impact of high CD8 + , CD8 + Ki67 + , CD8 + TCF1 + T cells, CD163 + PD-L1 + macrophages and PD-L1 status on prognosis was identified among the various breast cancer subtypes since only TNBC patients experience an improved prognosis compared to patients with luminal A tumors. Conversely, high infiltration by CD163 + cells is associated with worse prognosis only in patients with luminal A but not in TNBC tumors. Multivariate Cox regression analysis in TNBC patients revealed that increased CD8 + [hazard ratio (HR) = 0.542; 95% confidence interval (CI) 0.309-0.950; p = 0.032), CD8 + TCF1 + (HR = 0.280; 95% CI 0.101-0.779; p = 0.015), CD163 + PD-L1 + (HR: 0.312; 95% CI 0.112-0.870; p = 0.026) cells along with PD-L1 status employing two different scoring methods (HR: 0.362; 95% CI 0.162-0.812; p = 0.014 and HR: 0.395; 95% CI 0.176-0.884; p = 0.024) were independently linked with a lower relapse rate. Multivariate analysis in Luminal type A patients revealed that increased CD163 + was independently associated with a higher relapse rate (HR = 2.360; 95% CI 1.077-5.170; p = 0.032). This study demonstrates that the evaluation of the functional status of CD8 + T cells in combination with the analysis of immunosuppressive elements could provide clinically relevant information in different breast cancer subtypes.


Subject(s)
B7-H1 Antigen , Triple Negative Breast Neoplasms , Humans , Ki-67 Antigen , Neoplasm Recurrence, Local , CD8-Positive T-Lymphocytes , Macrophages , Chronic Disease , Tumor Microenvironment
2.
Cell Rep ; 35(10): 109220, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34107253

ABSTRACT

Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.


Subject(s)
Cellular Senescence/genetics , DNA Damage/genetics , Mutagens/metabolism , T-Lymphocytes/metabolism , Humans
3.
Cell Rep ; 35(1): 108931, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33826883

ABSTRACT

Bacterial genotoxins cause DNA damage in eukaryotic cells, resulting in activation of the DNA damage response (DDR) in vitro. These toxins are produced by Gram-negative bacteria, enriched in the microbiota of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. However, their role in infection remains poorly characterized. We address the role of typhoid toxin in modulation of the host-microbial interaction in health and disease. Infection with a genotoxigenic Salmonella protects mice from intestinal inflammation. We show that the presence of an active genotoxin promotes DNA fragmentation and senescence in vivo, which is uncoupled from an inflammatory response and unexpectedly associated with induction of an anti-inflammatory environment. The anti-inflammatory response is lost when infection occurs in mice with acute colitis. These data highlight a complex context-dependent crosstalk between bacterial-genotoxin-induced DDR and the host immune response, underlining an unexpected role for bacterial genotoxins.


Subject(s)
Cellular Microenvironment , Host-Pathogen Interactions/immunology , Toxins, Biological/toxicity , Typhoid Fever/immunology , Animals , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/metabolism , Cellular Microenvironment/drug effects , Colitis/immunology , Colitis/microbiology , Colitis/pathology , Host-Pathogen Interactions/drug effects , Immunity/drug effects , Inflammation/pathology , Mice, Inbred C57BL , Mutagens/toxicity , Salmonella/physiology
4.
Cancers (Basel) ; 12(7)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645996

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is resistant to single-agent immunotherapies. To understand the mechanisms leading to the poor response to this treatment, a better understanding of the PDAC immune landscape is required. The present work aims to study the immune profile in PDAC in relationship to spatial heterogeneity of the tissue microenvironment (TME) in intact tissues. METHODS: Serial section and multiplex in situ analysis were performed in 42 PDAC samples to assess gene and protein expression at single-cell resolution in the: (a) tumor center (TC), (b) invasive front (IF), (c) normal parenchyma adjacent to the tumor, and (d) tumor positive and negative draining lymph nodes (LNs). RESULTS: We observed: (a) enrichment of T cell subpopulations with exhausted and senescent phenotype in the TC, IF and tumor positive LNs; (b) a dominant type 2 immune response in the TME, which is more pronounced in the TC; (c) an emerging role of CD47-SIRPα axis; and (d) a similar immune cell topography independently of the neoadjuvant chemotherapy. CONCLUSION: This study reveals the existence of dysfunctional T lymphocytes with specific spatial distribution, thus opening a new dimension both conceptually and mechanistically in tumor-stroma interaction in PDAC with potential impact on the efficacy of immune-regulatory therapeutic modalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...