Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6900, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903764

ABSTRACT

Inter-organelle contact and communication between mitochondria and sarco/endoplasmic reticulum (SR/ER) maintain cellular homeostasis and are profoundly disturbed during tissue ischemia. We tested the hypothesis that the formin Diaphanous-1 (DIAPH1), which regulates actin dynamics, signal transduction and metabolic functions, contributes to these processes. We demonstrate that DIAPH1 interacts directly with Mitofusin-2 (MFN2) to shorten mitochondria-SR/ER distance, thereby enhancing mitochondria-ER contact in cells including cardiomyocytes, endothelial cells and macrophages. Solution structure studies affirm the interaction between the Diaphanous Inhibitory Domain and the cytosolic GTPase domain of MFN2. In male rodent and human cardiomyocytes, DIAPH1-MFN2 interaction regulates mitochondrial turnover, mitophagy, and oxidative stress. Introduction of synthetic linker construct, which shorten the mitochondria-SR/ER distance, mitigated the molecular and functional benefits of DIAPH1 silencing in ischemia. This work establishes fundamental roles for DIAPH1-MFN2 interaction in the regulation of mitochondria-SR/ER contact networks. We propose that targeting pathways that regulate DIAPH1-MFN2 interactions may facilitate recovery from tissue ischemia.


Subject(s)
Endothelial Cells , Mitochondria , Humans , Male , Endoplasmic Reticulum/metabolism , Endothelial Cells/metabolism , Formins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Ischemia/genetics , Ischemia/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction , Animals
2.
J Biol Chem ; 299(11): 105342, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832872

ABSTRACT

The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.


Subject(s)
Actin Cytoskeleton , Actins , Formins , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Formins/metabolism , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
3.
Sci Rep ; 12(1): 22293, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36566335

ABSTRACT

Analytical tools to study cell physiology are critical for optimizing drug-host interactions. Real time pulse chase NMR spectroscopy, RTPC-NMR, was introduced to monitor the kinetics of metabolite production in HEK 293T cells treated with COVID-19 vaccine-like lipid nanoparticles, LNPs, with and without mRNA. Kinetic flux parameters were resolved for the incorporation of isotopic label into metabolites and clearance of labeled metabolites from the cells. Changes in the characteristic times for alanine production implicated mitochondrial dysfunction as a consequence of treating the cells with lipid nanoparticles, LNPs. Mitochondrial dysfunction was largely abated by inclusion of mRNA in the LNPs, the presence of which increased the size and uniformity of the LNPs. The methodology is applicable to all cultured cells.


Subject(s)
COVID-19 , Nanoparticles , Humans , HEK293 Cells , Lipids/chemistry , RNA, Messenger/genetics , COVID-19 Vaccines , Liposomes , Magnetic Resonance Spectroscopy , Nanoparticles/chemistry , Mitochondria/genetics , RNA, Small Interfering/genetics
4.
Inorg Chem ; 56(22): 13913-13929, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29087196

ABSTRACT

We report the formation of new cyclic porphyrin tetrads 1 and 2, which were obtained from the reaction between dihydroxytin(IV) porphyrin and cis-dihydroxy-21-thiaporphyrin/21,23-dithiaporphyrin. The unique oxophilicity of tin(IV) porphyrin was the driving force for the formation of these tetrads. Moreover, these novel tetrads represent the first examples of cyclic porphyrins containing tin(IV) that are constructed exclusively on the basis of the "Sn-O" interaction without any other complementary, noncompetitive mode of interactions. The molecular structures of the cyclic tetrads have been investigated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, NMR spectroscopy, quantum-mechanical calculations, and, in one case, single-crystal X-ray crystallography. The X-ray structure revealed that the two cis-dihydroxy-N2S2 porphyrins were coordinated at the axial positions of two tin(IV) porphyrins, leading to the symmetric cyclic tetrad structure. The optical properties of tetrads were studied, and these compounds were stable under redox conditions. Preliminary photophysical studies carried out on the tetrads indicated efficient energy transfer from tin(IV) porphyrin to the thiaporphyrin unit, which highlights their potential applications in energy and electron transfer in the future.

5.
Chemistry ; 22(28): 9699-708, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27245271

ABSTRACT

Two unprecedented mixed B(III) /P(V) complexes of meso-triaryl 25-oxasmaragdyrins were synthesized in appreciable yields under mild reaction conditions. These unusual 25-oxasmaragdyrin complexes containing one or two seven-membered heterocyclic rings comprised of five different atoms (B, C, N, O, and P) were prepared by reacting B(OH)(Ph)-smaragdyrin and B(OH)2 -smaragdyrin complexes, respectively, with POCl3 in toluene at reflux temperature. The products were characterized by HRMS and 1D- and 2D-NMR spectroscopy. X-ray crystallography of one of the mixed B(III) /P(V) smaragdyrin complexes indicated that the macrocycle is significantly distorted and contains a stable seven-membered heterocyclic ring within the macrocycle. The bands in the absorption and emission spectra were bathochromically shifted with reduced quantum yields and singlet-state lifetimes relative to the free base, meso-triaryl 25-oxasmaragdyrin. The mixed B(III) /P(V) complexes were difficult to oxidize but easier to reduce than the free base. The DFT-optimized structure of the 25-oxasmaragdyrin complex with two seven-membered heterocycles indicated that it was a bicyclic spiro compound with two half-chair-like conformers. This was in contrast to the chair-like conformation of the complex with a single seven-membered heterocyclic ring. Moreover, incorporation of a second phosphate group in the former case stabilized the bonding geometry and resulted in higher stability, which was reflected in the bathochromic shift of the absorption spectra, more-positive oxidation potential, and less-negative reduction potential.

6.
Chemistry ; 21(32): 11315-9, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26179173

ABSTRACT

Unprecedented examples of smaragdyrin macrocycles containing seven membered heterocyclic rings were synthesized under simple reaction conditions in high yields. The heterocycle formed inside smaragdyrin macrocycle is rare example of heterocycle containing five different atoms, such as B, C, N, O, and P atoms. The mixed B(III) and P(V) complexes of smaragdyrin macrocycles showed new structural, spectral, and electrochemical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...