Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363757

ABSTRACT

Campylobacter jejuni is one of the most common causes of foodborne human gastroenteritis in the developed world. This bacterium colonizes in the ceca of chickens, spreads throughout the poultry production chain, and contaminates poultry products. Despite numerous on farm intervention strategies and developments in post-harvest antimicrobial treatments, C. jejuni is frequently detected on broiler meat products. This indicates that C. jejuni is evolving over time to overcome the stresses/interventions that are present throughout poultry production and processing. The development of aerotolerance has been reported to be a major survival strategy used by C. jejuni in high oxygen environments. Recent studies have indicated that C. jejuni can enter a viable but non-culturable (VBNC) state or develop biofilm in response to environmental stressors such as refrigeration and freezing stress and aerobic stress. This review provides an overview of different stressors that C. jejuni are exposed to throughout the poultry production chain and the genotypic and phenotypic survival mechanisms, with special attention to aerotolerance, biofilm formation, and development of the VBNC state.

2.
Microbiol Spectr ; 9(3): e0083421, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34878309

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes significant economic and welfare concerns to the broiler industry. For several decades, prophylactic supplementation of antimicrobial growth promoters was the primary method to control APEC; however, the recent shift to no antibiotics ever (NAE) production has increased colibacillosis incidence. The objectives of this study were to determine the influence of season, flock age, and sample type on the prevalence and virulence of E. coli and to identify the serogroups and antimicrobial susceptibility of virulent and nonvirulent E. coli in NAE broiler farms. Litter, feces, cloacal swabs, and tracheal swabs were collected from 4 NAE farms during spring and summer seasons, and E. coli was isolated and confirmed by PCR. Confirmed E. coli isolates were tested for 5 APEC-virulence-associated genes (VAGs) using quantitative PCR (qPCR). Further, E. coli isolates with all five VAGs (100 isolates) and E. coli isolates without any VAGs (87 isolates) were screened against 11 antimicrobials through Kirby-Bauer disk diffusion assay, and their serogroups were tested using PCR. Data were analyzed using the GLIMMIX procedure of SAS 9.4, and statistical significance was determined at a P value of ≤0.05. Overall, the prevalence of E. coli was not affected by season, flock age, or sample type. However, the prevalence of all tested VAGs decreased from spring to summer (P ≤ 0.002). The frequency of resistance was highest for tetracycline, and serogroups O8 (31%) and O78 (11%) were most frequent in virulent E. coli. In conclusion, there is a high prevalence of virulent E. coli in NAE farms, especially in the spring season. IMPORTANCE Avian pathogenic Escherichia coli causes one of the most detrimental bacterial diseases to the United States poultry industry, colibacillosis. Colibacillosis leads to decreased performance, early mortality, and subsequent production loss. Previously, colibacillosis was largely mitigated by the use of antimicrobial growth promoters. Due to concerns about antimicrobial resistance, the use of these promoters has been largely removed from the broiler industry. With recent shifts in the poultry industry to NAE broiler production, there is an increase in bacterial disease and mortality. We do not know how this shift to NAE affects APEC prevalence within broiler farms. Therefore, in the current study, we attempted to assess the prevalence and virulence of E. coli within an antibiotic-free broiler environment, assessed antimicrobial susceptibility, and identified the serogroups of virulent and nonvirulent E. coli.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Chickens/microbiology , Escherichia coli Infections/veterinary , Escherichia coli/genetics , Prescription Drug Overuse/prevention & control , Animals , Anti-Bacterial Agents/pharmacology , Disk Diffusion Antimicrobial Tests , Drug Resistance, Bacterial , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Poultry/microbiology , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...