Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mitochondrial DNA B Resour ; 8(9): 948-951, 2023.
Article in English | MEDLINE | ID: mdl-37701527

ABSTRACT

The genus Coelastrum Nägeli (Sphaeropleales; Scenedesmaceae) is a diverse genus of green algae with potential biotechnical applications. A sound understanding of its phylogeny will be a useful tool for predicting the distribution of traits that may enhance its utility, and may lead to a better understanding of its evolution and ecology. Here we present the plastome of Coelastrum microporum. Our exemplar was isolated from Gull Lake, Michigan and the complete plastome as assembled was 169,961 bp in length. The plastome contained 104 genes of which 68 were protein-coding genes (CDSs), 27 tRNA genes and three rRNA genes. The GC content of the plastome was 31.2%. The maximum likelihood phylogeny suggested that C. microporum was the sister group to a clade of single exemplars of three other genera in the Scenedesmaceae (Tetradesmus, Pectinodesmus and Coelastrella).

2.
Sci Rep ; 12(1): 15116, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068258

ABSTRACT

Our understanding of the importance of microbiomes on large aquatic animals-such as whales, sea turtles and manatees-has advanced considerably in recent years. The latest observations indicate that epibiotic diatom communities constitute diverse, polyphyletic, and compositionally stable assemblages that include both putatively obligate epizoic and generalist species. Here, we outline a successful approach to culture putatively obligate epizoic diatoms without their hosts. That some taxa can be cultured independently from their epizoic habitat raises several questions about the nature of the interaction between these animals and their epibionts. This insight allows us to propose further applications and research avenues in this growing area of study. Analyzing the DNA sequences of these cultured strains, we found that several unique diatom taxa have evolved independently to occupy epibiotic habitats. We created a library of reference sequence data for use in metabarcoding surveys of sea turtle and manatee microbiomes that will further facilitate the use of environmental DNA for studying host specificity in epizoic diatoms and the utility of diatoms as indicators of host ecology and health. We encourage the interdisciplinary community working with marine megafauna to consider including diatom sampling and diatom analysis into their routine practices.


Subject(s)
Diatoms , Turtles , Animals , Diatoms/genetics , Ecology , Ecosystem , Turtles/genetics
3.
PhytoKeys ; 208: 103-184, 2022.
Article in English | MEDLINE | ID: mdl-36761401

ABSTRACT

Ardissonea was resurrected from Synedra in 1986 and was included as a genus by Round, Crawford and Mann ("The Diatoms") in its own Family and Order. They commented that there might be several genera involved since the type species of the genus possesses a double-walled structure and other taxa placed in Ardissonea have only a single-walled structure. Two other genera of "big sticks," Toxarium and Climacosphenia, were placed in their own Families and Orders but share many characters with Ardissoneaceae, especially growth from a bifacial annulus. Eighteen taxa (11 new species) from Micronesia were compared with the literature and remnant material from Grunow's Honduras Sargassum sample to address the concepts of Ardissonea and Ardissoneaceae. Phylogenetic and morphological analyses showed three clades within Ardissonea sensu lato: Ardissonea emend. for the double-walled taxa, Synedrosphenia emend. and Ardissoneopsis gen. nov. for single-walled taxa. New species include Ardissoneadensistriata sp. nov.; Synedrospheniabikarensis sp. nov., S.licmophoropsis sp. nov., S.parva sp. nov., and S.recta sp. nov.; Ardissoneopsisfulgicans sp. nov., A.appressata sp. nov., and A.gracilis sp. nov. Transfers include Synedrospheniacrystallina comb. nov. and S.fulgens comb. nov. Synedraundosa, seen for the first time in SEM in Grunow's material, is transferred to Ardissoneopsisundosa comb. nov. Three more genera have similar structure: Toxarium, Climacosphenia and Grunowago gen. nov., erected for Synedrabacillaris and a lanceolate species, G.pacifica sp. nov. Morphological characters of Toxarium in our region support separation of Toxariumhennedyanum and T.undulatum and suggest additional species here and elsewhere. Climacospheniamoniligera was not found but we clarify its characters based on the literature and distinguish C.soulonalis sp. nov. from it. Climacospheniaelongata and a very long, slender C.elegantissima sp. nov., previously identified as C.elongata, were present along with C.scimiter. Morphological and molecular phylogenetics strongly suggested that all these genera belong in one family and we propose to include them in the Ardissoneacae and to reinstate the Order Ardissoneales Round.

4.
Mol Phylogenet Evol ; 158: 106985, 2021 05.
Article in English | MEDLINE | ID: mdl-33059066

ABSTRACT

The Bacillariaceae is a very species-rich family of raphid diatoms and includes the large and taxonomically difficult genus Nitzschia, whose species are often small-celled and finely structured and have few discrete morphological characters visible in the light microscope. The classification of Nitzschia is still mostly based on one developed in the second half of the 19th century by Grunow, who separated the genus into a series of sections largely on cell shape and symmetry, the position of the raphe, transverse extension of the fibulae, and folding of the valve. We assembled and analysed single-gene and concatenated alignments of nSSU, nLSU, rbcL, psbC and cox1 to test Grunow's and subsequent classifications and to examine selected morphological characters for their potential to help define monophyletic groups. The maximum likelihood trees were equivocal as to monophyly of the family itself but showed good support for each of eight main clades of Bacillariaceae, three of which corresponded more or less to existing genera (Hantzschia, Cylindrotheca and Bacillaria). The other five main clades and some subclades comprised groups of Nitzschia species or assemblies of Nitzschia species with other genera (Pseudo-nitzschia, Fragilariopsis, Neodenticula, Tryblionella, Psammodictyon). Relationships between most of the eight main clades were not resolved robustly but all analyses recovered Nitzschia as non-monophyletic. The Grunowian classification of Nitzschia into sections was not supported, though in some respects (e.g. treatment of sigmoid species) it is better than subsequent reclassifications. Several of the main clades and subclades are cryptic (lacking morphological synapomorphies) and homoplasy is common in both light microscopical and ultrastructural characters (to the extent that organisms initially assigned to the same species sometimes prove to belong to a different main clade). Nevertheless, some characters, including the structure of the raphe canal and girdle, seem to be sufficiently conservative evolutionarily to give a provisional estimate of relationships if molecular data are unavailable. No new formal classifications are proposed but various options are explored and research needs identified.


Subject(s)
Diatoms/classification , Chloroplasts/classification , Chloroplasts/genetics , Diatoms/genetics , Diatoms/physiology , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Likelihood Functions , Microscopy, Electron, Scanning , Phylogeny , RNA, Ribosomal, 18S/classification , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/classification , RNA, Ribosomal, 28S/genetics
5.
Sci Rep ; 10(1): 14358, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32873883

ABSTRACT

Diatoms are the largest group of heterokont algae with more than 100,000 species. As one of the single-celled photosynthetic organisms that inhabit marine, aquatic and terrestrial ecosystems, diatoms contribute ~ 45% of global primary production. Despite their ubiquity and environmental significance, very few diatom plastid genomes (plastomes) have been sequenced and studied. This study explored patterns of nucleotide substitution rates of diatom plastids across the entire suite of plastome protein-coding genes for 40 taxa representing the major clades. The highest substitution rate was lineage-specific within the araphid 2 taxon Astrosyne radiata and radial 2 taxon Proboscia sp. Rate heterogeneity was also evident in different functional classes and individual genes. Similar to land plants, proteins genes involved in photosynthetic metabolism have lower synonymous and nonsynonymous substitutions rates than those involved in transcription and translation. Significant positive correlations were identified between substitution rates and measures of genomic rearrangements, including indels and inversions, which is a similar result to what was found in legume plants. This work advances the understanding of the molecular evolution of diatom plastomes and provides a foundation for future studies.


Subject(s)
Base Sequence/genetics , Diatoms/cytology , Genome, Plastid , Nucleotides/genetics , Plastids/genetics , Proteins/genetics , Diatoms/genetics , Ecosystem , Evolution, Molecular , Gene Order , Genes, Essential , Genetic Heterogeneity , Inverted Repeat Sequences , Photosynthesis/genetics , Phylogeny
6.
Protist ; 171(2): 125713, 2020 04.
Article in English | MEDLINE | ID: mdl-32325416

ABSTRACT

In many marine littoral and sublittoral benthic habitats, we find small diatoms with few features resolvable with light microscopy (LM) other than internal costae across their valves. While classically those internal costae have defined their identification and classification, the use of electron microscopy and of molecular data have started to reveal the true diversity of unrelated forms and genera (e.g., Anaulus, Eunotogramma, Hustedtiella, or Plagiogramma) which possess these structures. Here we describe the new genus Ambo, in an attempt to clarify some of the polyphyly of taxa with internal costa by formally transferring Anaulus balticus, Anaulus simonsenii, and Plagiogramma tenuissimum as well as Ambo gallaeciae, described here. Related to this, we attempt to document and characterize the genus Anaulus itself, which was formally described by Ehrenberg with an illustration. A search by LM of mica designated by Ehrenberg as the holotype of Anaulus scalaris, the generitype of Anaulus, failed to recover a specimen which adequately describes the genus to the exclusion of other genera with internal costa. We also present morphological and molecular data for Anaulus creticus and suggest a new genus-Ceratanaulus-to reflect the distinct morphological and molecular characters we documented.


Subject(s)
Aquatic Organisms/classification , Aquatic Organisms/genetics , Biodiversity , Diatoms/classification , Diatoms/genetics , Phylogeny , Species Specificity
7.
J Phycol ; 56(4): 953-978, 2020 08.
Article in English | MEDLINE | ID: mdl-32259285

ABSTRACT

Detailed morphological documentation is provided for established Proschkinia taxa, including the generitype, P. bulnheimii, and P. complanata, P. complanatula, P. complanatoides and P. hyalosirella, and six new species. All established taxa are characterized from original material from historical collections. The new species described in this paper (P. luticola, P. staurospeciosa, P. impar, P. modesta, P. fistulispectabilis, and P. rosowskii) were isolated from the Western Pacific (Yellow Sea coast of Korea) and the Atlantic (Scottish and Texas coasts). Thorough documentation of the frustule, valve and protoplast architecture revealed the combination of characters diagnostic of the genus Proschkinia: a single-lobed chloroplast; a broad girdle composed of U-shaped, perforated bands; the position of the conopeate raphe-sternum relative to the external and internal valve surface; and the presence of an occluded process through the valve, termed the "fistula". Seven strains of Proschkinia were grown in culture and five of these were sequenced for nuclear ribosomal SSU and plastid-encoded rbcL. Phylogenetic analysis recovered a clade of Proschkinia with Fistulifera, another fistula-bearing diatom genus, and together these were sister to a clade formed of the Stauroneidaceae; in turn, all of these were sister to a clade composed of Parlibellus and two monoraphid genera Astartiella and Schizostauron. Despite morphological similarities between Proschkinia and the Naviculaceae, these two taxa are distant in our analysis. We document the variation in the morphology of Proschkinia, including significant variability in the fistula, suggesting that fistula ultrastructure might be one of the key features for species identification within the genus.


Subject(s)
Diatoms , Phylogeny , Republic of Korea
8.
Mol Phylogenet Evol ; 138: 53-64, 2019 09.
Article in English | MEDLINE | ID: mdl-31129347

ABSTRACT

Plastid genomes (plastomes) of photosynthetic angiosperms are for the most part highly conserved in their organization, mode of inheritance and rates of nucleotide substitution. A small number of distantly related lineages share a syndrome of features that deviate from this general pattern, including extensive genomic rearrangements, accelerated rates of nucleotide substitution, biparental inheritance and plastome-genome incompatibility. Previous studies of plastomes in Passiflora with limited taxon sampling suggested that the genus exhibits this syndrome. To examine this phenomenon further, 15 new plastomes from Passiflora were sequenced and combined with previously published data to examine the phylogenetic relationships, genome organization and evolutionary rates across all five subgenera and the sister genus Adenia. Phylogenomic analyses using 68 protein-coding genes shared by Passiflora generated a fully resolved and strongly supported tree that is congruent with previous phylogenies based on a few plastid and nuclear loci. This phylogeny was used to examine the distribution of plastome rearrangements across Passiflora. Multiple gene and intron losses and inversions were identified in Passiflora with some occurring in parallel and others that extended across the Passifloraceae. Furthermore, extensive expansions and contractions of the inverted repeat (IR) were uncovered and in some cases this resulted in exclusion of all ribosomal RNA genes from the IR. The most highly rearranged lineage was subgenus Decaloba, which experienced extensive IR expansion that incorporated up to 25 protein-coding genes usually located in large single copy region. Nucleotide substitution rate analyses of 68 protein-coding genes across the genus showed lineage- and locus-specific acceleration. Significant increase in dS, dN and dN/dS was detected for clpP across the genus and for ycf4 in certain lineages. Significant increases in dN and dN/dS for ribosomal subunits and plastid-encoded RNA polymerase genes were detected in the branch leading to the expanded IR-clade in subgenus Decaloba. This subgenus displays the syndrome of unusual features, making it an ideal system to investigate the dynamic evolution of angiosperm plastomes.


Subject(s)
Gene Rearrangement/genetics , Genome, Plastid , Nucleotides/genetics , Passiflora/genetics , Base Sequence , Likelihood Functions , Open Reading Frames/genetics , Phylogeny
9.
Mitochondrial DNA B Resour ; 4(1): 25-26, 2019.
Article in English | MEDLINE | ID: mdl-33365405

ABSTRACT

We obtained the complete mitogenome of Proschkinia sp. strain SZCZR1824, a strain belonging to a poorly known diatom genus with no previous molecular data. This genome is 48,863 bp long, with two group I introns in rnl and three group II introns in cox1. Using mitogenomic data, Proschkinia sp. was recovered with Fistulifera solaris, far distant from Navicula and Nitzschia, two genera with which Proschkinia has sometimes been associated based on morphology.

10.
Protist ; 169(4): 539-568, 2018 08.
Article in English | MEDLINE | ID: mdl-30036779

ABSTRACT

Until now only one group of diatoms, the Bacillariaceae, was known to contain heterotrophic representatives. We show that a second group, represented by species in the genus Tursiocola, has undergone evolutionary loss of photosynthesis within the Bacillariophyta. Heterotrophy was evidenced by the presence of only apochlorotic cells in live and motile specimens. Three species of Tursiocola (T. bondei sp. nov., T. alata sp. nov., and T. gracilis sp. nov.), of which at least two are apochlorotic, are described as new to science from the skin of Florida manatees. T. ziemanii and T. varicopulifera were also observed to be apochlorotic. A new morphological feature termed a "fastigium" was observed on some Tursiocola spp. and is described as an extension of the mantle margin at the valve apex that overhangs the apex and extends towards the valve face. The presence of greatly elevated marginal ridges on the valve face of T. alata sp. nov. is a newly observed morphological character within the genus. Phylogenetic analyses using ribosomal RNA sequences indicate that Tursiocola is monophyletic, though morphological character analysis suggests paraphyly as species of the closely related Epiphalaina genus are embedded within a larger Tursiocola clade.


Subject(s)
Diatoms/isolation & purification , Trichechus manatus/microbiology , Animals , Diatoms/classification , Diatoms/ultrastructure , Skin/microbiology
11.
PLoS One ; 13(6): e0196744, 2018.
Article in English | MEDLINE | ID: mdl-29883488

ABSTRACT

The diatom Phaeodactylum tricornutum has been used as a model for cell biologists and ecologists for over a century. We have incorporated several new raphid pennates into a three gene phylogenetic dataset (SSU, rbcL, psbC), and recover Gomphonemopsis sp. as sister to P. tricornutum with 100% BS support. This is the first time a close relative has been identified for P. tricornutum with robust statistical support. We test and reject a succession of hypotheses for other relatives. Our molecular data are statistically significantly incongruent with placement of either or both species among the Cymbellales, an order of diatoms with which both have been associated. We believe that further resolution of the phylogenetic position of P. tricornutum will rely more on increased taxon sampling than increased genetic sampling. Gomphonemopsis is a benthic diatom, and its phylogenetic relationship with P. tricornutum is congruent with the hypothesis that P. tricornutum is a benthic diatom with specific adaptations that lead to active recruitment into the plankton. We hypothesize that other benthic diatoms are likely to have similar adaptations and are not merely passively recruited into the plankton.


Subject(s)
Databases, Nucleic Acid , Diatoms/classification , Diatoms/genetics , Phylogeny , Phytoplankton/genetics , Diatoms/ultrastructure , Phytoplankton/ultrastructure
12.
Protist ; 168(1): 48-70, 2017 02.
Article in English | MEDLINE | ID: mdl-28043007

ABSTRACT

Several lineages of raphe-bearing diatoms possess a "stauros," which is a transverse, usually thickened area free of pores across the center of the valve. It has been suggested that this structure has evolved several times across the raphid diatoms, but we have noticed similarities beyond the stauros between two marine genera-Craspedostauros and Staurotropis-in the structure of their pore occlusions. We have isolated, cultured and extracted DNA from several strains of both genera to infer the phylogenetic relationship between these taxa, as well as test the suggested relationship of Craspedostauros to Achnanthes and Mastogloia based on plastid morphology. DNA sequence data (nuclear-encoded rRNA SSU, plastid-encoded rbcL and psbC) suggest that, except for Mastogloia, these genera are closely-related, though not sister taxa. The DNA phylogeny also suggests that the Mastogloiales are not monophyletic, with clades containing Achnanthes and Craspedostauros sister to clades containing taxa in the Bacillariales. Using evidence from molecular and morphological data, we describe the following new taxa: Craspedostauros alyoubii and C. paradoxa from the Red Sea and Guam, respectively; Staurotropis khiyamii and S. americana from the Red Sea and the Gulf of Mexico, respectively; and Dreuhlago cuneata n. gen., n. sp. from Guam.


Subject(s)
Diatoms/classification , Evolution, Molecular , Phylogeny , Algal Proteins/genetics , Diatoms/genetics , Diatoms/ultrastructure , Microscopy, Electron, Scanning , Sequence Analysis, DNA
13.
Curr Genet ; 63(3): 499-507, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27655214

ABSTRACT

Although the plastid genomes of diatoms maintain a conserved architecture and core gene set, considerable variation about this core theme exists and can be traced to several different processes. Gene duplication, pseudogenization, and loss, as well as intracellular transfer of genes to the nuclear genome, have all contributed to variation in gene content among diatom species. In addition, some noncoding sequences have highly restricted phylogenetic distributions that suggest a recent foreign origin. We sequenced the plastid genome of the marine diatom, Toxarium undulatum, and found that the genome contains three genes (chlB, chlL, and chlN) involved in light-independent chlorophyll a biosynthesis that were not previously known from diatoms. Phylogenetic and syntenic data suggest that these genes were differentially retained in this one lineage as they were repeatedly lost from most other diatoms. Unique among diatoms and other heterokont algae sequenced so far, the genome also contains a large group II intron within an otherwise intact psaA gene. Although the intron is most similar to one in the plastid-encoded psaA gene of some green algae, high sequence divergence between the diatom and green algal introns rules out recent shared ancestry. We conclude that the psaA intron was likely introduced into the plastid genome of T. undulatum, or some earlier ancestor, by horizontal transfer from an unknown donor. This genome further highlights the myriad processes driving variation in gene and intron content in the plastid genomes of diatoms, one of the world's foremost primary producers.


Subject(s)
Chlorophyll/biosynthesis , Diatoms/genetics , Evolution, Molecular , Gene Transfer, Horizontal/genetics , Chlorophyll/genetics , Chlorophyll A , Genome, Plastid/genetics , Introns/genetics , Phylogeny , Plastids/genetics , Sequence Analysis, DNA
14.
Mol Phylogenet Evol ; 103: 155-171, 2016 10.
Article in English | MEDLINE | ID: mdl-27456747

ABSTRACT

The Surirellales and Rhopalodiales are large, widespread, and morphologically diverse groups of raphid pennate diatoms (Bacillariphyta) whose raphe, a structure that facilitates active motility, opens internally into a siliceous canal. We collected 202 representatives of the lineage and sequenced genes from the nuclear, plastid, and mitochondrial genomes to infer phylogenetic relationships as a basis for comparative study of ecology and morphological evolution as well as reclassification. The lineage was ancestrally marine, and we report the first evidence for a 'stepping stone' model of marine-freshwater transitions in which freshwater invasions were preceded by adaptation to intermediate brackish habitats. Phylogenetic comparative analyses also showed that the shift from an apical (e.g., Entomoneis) to transapical major axis of development (e.g., Surirella) did not have to proceed through subcircular intermediate forms (i.e., Campylodiscus). Rather, subcircular forms evolved both within lineages with longer apical axis or longer transapical axis. We also used the inferred phylogeny as a basis for genus-level reclassification of the lineage. Campylodiscus now includes the fastuosoid members of Surirella and Campylodiscus, but excludes other marine Campylodiscus which are now classified as Coronia. Surirella includes the Surirella striatula clade, Surirella Pinnatae group, and species formerly classified as Cymatopleura. We resurrected the genus Iconella to accommodate Stenopterobia and the robustoid members of Surirella and Campylodiscus. We broadened Epithemia to include members of the paraphyletic genus Rhopalodia. Finally, we discuss the challenges of constructing a classification that best leverages available phylogenetic data, while minimizing disruption to the research community and recognizing practical considerations stemming from the slow rate of progress on systematic studies of understudied organisms.


Subject(s)
Diatoms/cytology , Evolution, Molecular , Bayes Theorem , Cytochromes b/classification , Cytochromes b/genetics , Cytochromes b/metabolism , DNA, Ribosomal/classification , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Diatoms/genetics , Ecosystem , Markov Chains , Phylogeny
15.
PLoS One ; 10(10): e0139300, 2015.
Article in English | MEDLINE | ID: mdl-26465289

ABSTRACT

Plagiogrammaceae, a poorly described family of diatoms, are common inhabitants of the shallow marine littoral zone, occurring either in the sediments or as epiphytes. Previous molecular phylogenies of the Plagiogrammaceae were inferred but included only up to six genera: Plagiogramma, Dimeregramma, Neofragilaria, Talaroneis, Psammogramma and Psammoneis. In this paper, we describe a new plagiogrammoid genus, Orizaformis, obtained from Bohai Sea (China) and present molecular phylogenies of the family based on three and four genes (nuclear-encoded large and small subunit ribosomal RNAs and chloroplast-encoded rbcL and psbC). Also included in the new phylogenies is Glyphodesmis. The phylogenies suggest that the Plagiogrammaceae is composed of two major clades: one consisting of Talaroneis, Orizaformis and Psammoneis, and the second of Glyphodesmis, Psammogramma, Neofragilaria, Dimeregramma and Plagiogramma. In addition, we describe three new species within established genera: Psammoneis obaidii, which was collected from the Red Sea, Saudi Arabia; and Neofragilaria stilus and Talaroneis biacutifrons from the Mozambique Channel, Indian Ocean, and illustrate two new combination taxa: Neofragilaria anomala and Neofragilaria lineata. Our observations suggest that the biodiversity of the family is strongly needed to be researched, and the phylogenetic analyses provide a useful framework for future studies of Plagiogrammaceae.


Subject(s)
Biodiversity , Diatoms/classification , Diatoms/genetics , Genes, Chloroplast , China , Chloroplasts/genetics , DNA, Ribosomal Spacer/genetics , Diatoms/physiology , Evolution, Molecular , Indian Ocean , Likelihood Functions , Mozambique , Phylogeny , RNA, Ribosomal/genetics , Saudi Arabia , Sequence Analysis, DNA , Species Specificity , Terminology as Topic
16.
Mol Phylogenet Evol ; 89: 28-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25848969

ABSTRACT

Previous analyses of single diatom chloroplast protein-encoded genes recovered results highly incongruent with both traditional phylogenies and phylogenies derived from the nuclear encoded small subunit (SSU) gene. Our analysis here of six individual chloroplast genes (atpB, psaA, psaB, psbA, psbC and rbcL) obtained similar anomalous results. However, phylogenetic noise in these genes did not appear to be correlated, and their concatenation appeared to effectively sum their collective signal. We empirically demonstrated the value of combining phylogenetic information profiling, partitioned Bremer support and entropy analysis in examining the utility of various partitions in phylogenetic analysis. Noise was low in the 1st and 2nd codon positions, but so was signal. Conversely, high noise levels in the 3rd codon position was accompanied by high signal. Perhaps counterintuitively, simple exclusion experiments demonstrated this was especially true at deeper nodes where the 3rd codon position contributed most to a result congruent with morphology and SSU (and the total evidence tree here). Correlated with our empirical findings, probability of correct signal (derived from information profiling) increased and the statistical significance of substitutional saturation decreased as data were aggregated. In this regard, the aggregated 3rd codon position performed as well or better than more slowly evolving sites. Simply put, direct methods of noise removal (elimination of fast-evolving sites) disproportionately removed signal. Information profiling and partitioned Bremer support suggest that addition of chloroplast data will rapidly improve our understanding of the diatom phylogeny, but conversely also illustrate that some parts of the diatom tree are likely to remain recalcitrant to addition of molecular data. The methods based on information profiling have been criticized for their numerous assumptions and parameter estimates and the fact that they are based on quartets of taxa. Our empirical results support theoretical arguments that the simplifying assumptions made in these methods are robust to "real-life" situations.


Subject(s)
Chloroplast Proteins/genetics , Diatoms/genetics , Genes, Chloroplast/genetics , Phylogeny , Codon/genetics , Diatoms/classification , Sequence Analysis, DNA
17.
ISME J ; 9(1): 246-55, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24983594

ABSTRACT

We characterized the evolutionary history of growth form (solitary-colonial) and its interaction with species' habitat (planktonic-benthic) across a multi-gene phylogeny encompassing a broad sample of the order-level diversity of diatoms. We treated these characters broadly, modeling the evolution of aggregation of cells into a colony irrespective of the way aggregation is achieved, and relating the growth form to a broad concept of niche location: in the plankton or benthos. The results showed that habitat shifts are rare implying conservatism in niche location at the level of large clades. On the other hand, the evolutionary history of growth form is more dynamic with evolutionary rates that vary across the tree. Analyses of a possible interaction revealed that shifts in growth form are independent of habitat and that traversing between habitats does not hinge upon species' growth form. Our findings help to fill a gap in the understanding of diatom niche and growth form macroevolution and contribute toward a platform for the comparative study of the mechanisms underlying diatom species and functional diversity.


Subject(s)
Biological Evolution , Diatoms/genetics , Ecosystem , Diatoms/growth & development , Humans , Models, Biological , Phylogeny
18.
PLoS One ; 9(9): e107854, 2014.
Article in English | MEDLINE | ID: mdl-25233465

ABSTRACT

Diatoms are mostly photosynthetic eukaryotes within the heterokont lineage. Variable plastid genome sizes and extensive genome rearrangements have been observed across the diatom phylogeny, but little is known about plastid genome evolution within order- or family-level clades. The Thalassiosirales is one of the more comprehensively studied orders in terms of both genetics and morphology. Seven complete diatom plastid genomes are reported here including four Thalassiosirales: Thalassiosira weissflogii, Roundia cardiophora, Cyclotella sp. WC03_2, Cyclotella sp. L04_2, and three additional non-Thalassiosirales species Chaetoceros simplex, Cerataulina daemon, and Rhizosolenia imbricata. The sizes of the seven genomes vary from 116,459 to 129,498 bp, and their genomes are compact and lack introns. The larger size of the plastid genomes of Thalassiosirales compared to other diatoms is due primarily to expansion of the inverted repeat. Gene content within Thalassiosirales is more conserved compared to other diatom lineages. Gene order within Thalassiosirales is highly conserved except for the extensive genome rearrangement in Thalassiosira oceanica. Cyclotella nana, Thalassiosira weissflogii and Roundia cardiophora share an identical gene order, which is inferred to be the ancestral order for the Thalassiosirales, differing from that of the other two Cyclotella species by a single inversion. The genes ilvB and ilvH are missing in all six diatom plastid genomes except for Cerataulina daemon, suggesting an independent gain of these genes in this species. The acpP1 gene is missing in all Thalassiosirales, suggesting that its loss may be a synapomorphy for the order and this gene may have been functionally transferred to the nucleus. Three genes involved in photosynthesis, psaE, psaI, psaM, are missing in Rhizosolenia imbricata, which represents the first documented instance of the loss of photosynthetic genes in diatom plastid genomes.


Subject(s)
Diatoms/genetics , Genome, Plastid , Inverted Repeat Sequences , Evolution, Molecular , Gene Order , Molecular Sequence Data , Photosynthetic Reaction Center Complex Proteins/genetics , Phylogeny , Sequence Analysis, DNA , Translocation, Genetic
19.
Genome Biol Evol ; 6(3): 644-54, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24567305

ABSTRACT

Photosynthesis by diatoms accounts for roughly one-fifth of global primary production, but despite this, relatively little is known about their plastid genomes. We report the completely sequenced plastid genomes for eight phylogenetically diverse diatoms and show them to be variable in size, gene and foreign sequence content, and gene order. The genomes contain a core set of 122 protein-coding genes, with 15 additional genes exhibiting complex patterns of 1) gene losses at varying phylogenetic scales, 2) functional transfers to the nucleus, 3) gene duplication, divergence, and differential retention of paralogs, and 4) acquisitions of putatively functional recombinase genes from resident plasmids. The newly sequenced genomes also contain several previously unreported genes, highlighting how poorly characterized diatom plastid genomes are overall. Genome size variation reflects major expansions of the inverted repeat region in some cases but, more commonly, large-scale expansions of intergenic regions, many of which contain unique open reading frames of likely foreign origin. Although many gene clusters are conserved across species, rearrangements appear to be frequent in most lineages.


Subject(s)
DNA/isolation & purification , Diatoms/genetics , Gene Deletion , Genome, Plastid , Chromosome Mapping , DNA/genetics , DNA, Intergenic , Diatoms/classification , Evolution, Molecular , Gene Duplication , Gene Order , Gene Rearrangement , Open Reading Frames , Phylogeny , Sequence Analysis, DNA
20.
PLoS Curr ; 52013 Jun 26.
Article in English | MEDLINE | ID: mdl-23827969

ABSTRACT

The phenotype represents a critical interface between the genome and the environment in which organisms live and evolve. Phenotypic characters also are a rich source of biodiversity data for tree building, and they enable scientists to reconstruct the evolutionary history of organisms, including most fossil taxa, for which genetic data are unavailable. Therefore, phenotypic data are necessary for building a comprehensive Tree of Life. In contrast to recent advances in molecular sequencing, which has become faster and cheaper through recent technological advances, phenotypic data collection remains often prohibitively slow and expensive. The next-generation phenomics project is a collaborative, multidisciplinary effort to leverage advances in image analysis, crowdsourcing, and natural language processing to develop and implement novel approaches for discovering and scoring the phenome, the collection of phentotypic characters for a species. This research represents a new approach to data collection that has the potential to transform phylogenetics research and to enable rapid advances in constructing the Tree of Life. Our goal is to assemble large phenomic datasets built using new methods and to provide the public and scientific community with tools for phenomic data assembly that will enable rapid and automated study of phenotypes across the Tree of Life.

SELECTION OF CITATIONS
SEARCH DETAIL
...