Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(15): 11302-11329, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34292726

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme that mediates the rate-limiting step in the metabolism of l-tryptophan to kynurenine, has been widely explored as a potential immunotherapeutic target in oncology. We developed a class of inhibitors with a conformationally constrained bicyclo[3.1.0]hexane core. These potently inhibited IDO1 in a cellular context by binding to the apoenzyme, as elucidated by biochemical characterization and X-ray crystallography. A SKOV3 tumor model was instrumental in differentiating compounds, leading to the identification of IACS-9779 (62) and IACS-70465 (71). IACS-70465 has excellent cellular potency, a robust pharmacodynamic response, and in a human whole blood assay was more potent than linrodostat (BMS-986205). IACS-9779 with a predicted human efficacious once daily dose below 1 mg/kg to sustain >90% inhibition of IDO1 displayed an acceptable safety margin in rodent toxicology and dog cardiovascular studies to support advancement into preclinical safety evaluation for human development.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Structure , Structure-Activity Relationship
2.
J Med Chem ; 58(3): 1140-58, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25581261

ABSTRACT

The spread of intra-abdominal cancers is a vexing clinical problem for which there is no widely effective treatment. We discovered previously that (2E)-3-[(4-tert-butylphenyl)sulfonyl]acrylonitrile (1) induced cancer cell apoptosis during adhesion to normal mesothelial cells which line the peritoneum. We recently demonstrated that the sulfonylacrylonitrile portion of 1 and hydrophobic aryl substitution were essential for pro-apoptotic activity in cancer cells. Here we synthesized a diverse series of analogues of 1 in order to improve the efficacy and pharmaceutical properties. Analogues and 1 were compared in their ability to cause cancer cell death during adhesion to normal mesothelial cell monolayers. Potent analogues identified in the in vitro assay were validated and found to exhibit improved inhibition of intra-abdominal cancer in two clinically relevant murine models of ovarian and pancreatic cancer spread and metastasis, highlighting their potential clinical use as an adjunct to surgical resection of cancers.


Subject(s)
Acrylonitrile/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Ovarian Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Sulfones/pharmacology , Acrylonitrile/chemical synthesis , Acrylonitrile/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , HT29 Cells , Humans , Mice , Molecular Structure , Ovarian Neoplasms/pathology , Ovarian Neoplasms/secondary , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/secondary , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/chemistry
3.
Bioorg Med Chem Lett ; 22(5): 1850-3, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22326395

ABSTRACT

The vast majority of cancer patients die from metastasis, the process by which cancer cells spread to secondary tissues through body fluids. Peritoneal carcinomatosis is a type of metastasis in which cancer cells gain access to the intra-abdominal cavity and then implant in the peritoneum, the thin tissue that lines the abdominal wall and internal organs. Unfortunately, peritoneal carcinomatosis can occur following surgical resection of intra-abdominal malignancies. We previously reported proapoptotic activity of (2E)-3-[[4-(1,1-dimethylethyl)phenyl]sulfonyl]-2-propenenitrile (BAY 11-7085, 1) on colon and pancreatic cancer cells during adhesion and demonstrated that this compound could significantly inhibit peritoneal carcinomatosis in mice.(1,2) In order to determine the chemical basis of the anti-metastatic properties of BAY 11-7085, a series of analogs were synthesized and evaluated for their ability to induce apoptosis in pancreatic and ovarian cancer cells during adhesion to mesothelial cells, which line the surface of the peritoneum. The co-culture assay results were validated using a murine peritoneal carcinomatosis model. These analogs may greatly benefit patients undergoing surgical resections of colorectal, pancreatic, and ovarian cancers depending on their tolerability.


Subject(s)
Acrylonitrile/chemistry , Acrylonitrile/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Carcinoma/drug therapy , Peritoneal Neoplasms/drug therapy , Acrylonitrile/chemical synthesis , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Carcinoma/pathology , Carcinoma/secondary , Cell Line, Tumor , Coculture Techniques , Female , Humans , Mice , Nitriles/chemical synthesis , Nitriles/chemistry , Nitriles/therapeutic use , Ovarian Neoplasms/drug therapy , Ovary/drug effects , Ovary/pathology , Peritoneal Neoplasms/pathology , Peritoneal Neoplasms/secondary , Peritoneum/drug effects , Peritoneum/pathology , Sulfones/chemical synthesis , Sulfones/chemistry , Sulfones/therapeutic use
5.
Bioorg Med Chem Lett ; 21(13): 3877-80, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21632243
6.
Bioorg Med Chem Lett ; 21(2): 660-3, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21190849

ABSTRACT

Elaboration of the SAR around a series of 2,4-diaminopyrimidines led to a number of c-Met inhibitors in which kinase selectivity was modulated by substituents appended on the C4-aminobenzamide ring and the nature of the C2-aminoaryl ring. Further lead optimization of the C2-aminoaryl group led to benzoxazepine analogs whose pharmaceutical properties were modulated by the nature of the substituent on the benzoxazepine nitrogen. Tumor stasis (with partial regressions) were observed when an orally bioavailable analog was evaluated in a GTL-16 tumor xenograft mouse model. Subsequent PK/PD studies suggested that a metabolite contributed to the overall in vivo response.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Humans , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
7.
Bioorg Med Chem Lett ; 21(1): 164-7, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21123062

ABSTRACT

The HGF-c-Met signaling axis is an important paracrine mediator of epithelial-mesenchymal cell interactions involving the regulation of multiple cellular activities including cell motility, mitogenesis, morphogenesis, and angiogenesis. Dysregulation of c-Met signaling (e.g., overexpression or increased activation) is associated with the development of a wide range of tumor types; thus, inhibiting the HGF-c-Met pathway is predicted to lead to anti-tumor effects in many cancers. Elaboration of a 2-arylaminopyrimidine scaffold led to a series of potent c-Met inhibitors bearing a C4-2-amino-N-methylbenzamide group. Specifically, a series of C2-benzazepinone analogs demonstrated potent inhibition of c-Met in enzymatic and cellular assays. Kinase selectivity could be tuned by varying the nature of the alkyl group on the benzazepinone nitrogen.


Subject(s)
Bridged Bicyclo Compounds/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrimidines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/pharmacology , Cell Line, Tumor , Humans , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem ; 18(12): 4351-62, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20483621

ABSTRACT

Dysregulation of the anaplastic lymphoma kinase (ALK) is implicated in a variety of cancers. A series of tetrahydropyrido[2,3-b]pyrazines was constructed as ring-constrained analogs of a known aminopyridine kinase scaffold. Chemistry was developed to rapidly elaborate the SAR, structural elements impacting ALK inhibitory activity were exploited, and kinase selective analogs were identified that inhibit ALK with IC(50) values approximately 10 nM (enzyme) and approximately 150 nM (cell).


Subject(s)
Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazines/chemistry , Anaplastic Lymphoma Kinase , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Computer Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Receptor Protein-Tyrosine Kinases , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 18(2): 749-54, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18054227

ABSTRACT

Efforts to further optimize the clinical candidate razaxaban have led to a new series of pyrazole-based factor Xa (fXa) inhibitors. Designed to prevent the potential formation of primary aniline metabolites in vivo, the nitrogen of the carboxamido linker between the pyrazole and proximal phenyl moiety of the razaxaban scaffold was replaced with a methylene group. The resulting ketones demonstrated excellent potency and selectivity for fXa but initially had poor oral bioavailability. Optimization by conversion from a P1 aminobenzisoxazole to a P1 p-methoxyphenyl residue, replacing the 3-trifluoromethylpyrazole with a 3-amidopyrazole, and employing a pyridone P4 group provided a fXa inhibitor with a potency and pharmacokinetic profile equivalent to that of razaxaban and improved selectivity over thrombin.


Subject(s)
Factor Xa Inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Animals , Caco-2 Cells , Dogs , Humans , Pyrazoles/pharmacokinetics , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...