Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biol Reprod ; 109(6): 821-838, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37788061

ABSTRACT

Haploid embryos have contributed significantly to our understanding of the role of parental genomes in development and can be applied to important biotechnology for human and animal species. However, development to the blastocyst stage is severely hindered in bovine haploid androgenetic embryos (hAE). To further our understanding of such developmental arrest, we performed a comprehensive comparison of the transcriptomic profile of morula-stage embryos, which were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of transcripts associated with differentiation in haploid and biparental embryos. Among numerous disturbances, results showed that pluripotency pathways, especially the wingless-related integration site (WNT) signaling, were particularly unbalanced in hAE. Moreover, transcript levels of KLF4, NANOG, POU5F1, SOX2, CDX2, CTNNBL1, AXIN2, and GSK3B were noticeably altered in hAE, suggesting disturbance of pluripotency and canonical WNT pathways. To evaluate the role of WNT on hAE competence, we exposed early Day-5 morula stage embryos to the GSK3B inhibitor CHIR99021. Although no alterations were observed in pluripotency and WNT-related transcripts, exposure to CHIR99021 improved their ability to reach the blastocysts stage, confirming the importance of the WNT pathway in the developmental outcome of bovine hAE.


Subject(s)
Gene Expression Regulation, Developmental , Wnt Signaling Pathway , Humans , Animals , Cattle , Wnt Signaling Pathway/genetics , Haploidy , Cell Differentiation/genetics , Blastocyst/metabolism , Embryonic Development/genetics
2.
Biomedicines ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37761017

ABSTRACT

Mechanisms of cell reprogramming by pluripotency-related transcription factors or nuclear transfer seem to be mediated by similar pathways, and the study of the contribution of OCT4 and SOX2 in both processes may help elucidate the mechanisms responsible for pluripotency. Bovine fibroblasts expressing exogenous OCT4 or SOX2, or both, were analyzed regarding the expression of pluripotency factors and imprinted genes H19 and IGF2R, and used for in vitro reprogramming. The expression of the H19 gene was increased in the control sorted group, and putative iPSC-like cells were obtained when cells were not submitted to cell sorting. When sorted cells expressing OCT4, SOX2, or none (control) were used as donor cells for somatic cell nuclear transfer, fusion rates were 60.0% vs. 64.95% and 70.53% vs. 67.24% for SOX2 vs. control and OCT4 vs. control groups, respectively; cleavage rates were 66.66% vs. 81.68% and 86.47% vs. 85.18%, respectively; blastocyst rates were 33.05% vs. 44.15% and 52.06% vs. 44.78%, respectively. These results show that the production of embryos by NT resulted in similar rates of in vitro developmental competence compared to control cells regardless of different profiles of pluripotency-related gene expression presented by donor cells; however, induced reprogramming was compromised after cell sorting.

3.
Front Cell Dev Biol ; 9: 640712, 2021.
Article in English | MEDLINE | ID: mdl-33869192

ABSTRACT

Mammalian uniparental embryos are efficient models for genome imprinting research and allow studies on the contribution of the paternal and maternal genomes to early embryonic development. In this study, we analyzed different methods for production of bovine haploid androgenetic embryos (hAE) to elucidate the causes behind their poor developmental potential. Results indicate that hAE can be efficiently generated by using intracytoplasmic sperm injection and oocyte enucleation at telophase II. Although androgenetic haploidy does not disturb early development up to around the 8-cell stage, androgenetic development is disturbed after the time of zygote genome activation and hAE that reach the morula stage are less capable to reach the blastocyst stage of development. Karyotypic comparisons to parthenogenetic- and ICSI-derived embryos excluded chromosomal segregation errors as causes of the developmental constraints of hAE. However, analysis of gene expression indicated abnormal levels of transcripts for key long non-coding RNAs involved in X chromosome inactivation and genomic imprinting of the KCNQ1 locus, suggesting an association with X chromosome and some imprinted loci. Moreover, transcript levels of methyltransferase 3B were significantly downregulated, suggesting potential anomalies in hAE establishing de novo methylation. Finally, the methylation status of imprinted control regions for XIST and KCNQ1OT1 genes remained hypomethylated in hAE at the morula and blastocyst stages, confirming their origin from spermatozoa. Thus, our results exclude micromanipulation and chromosomal abnormalities as major factors disturbing the normal development of bovine haploid androgenotes. In addition, although the cause of the arrest remains unclear, we have shown that the inefficient development of haploid androgenetic bovine embryos to develop to the blastocyst stage is associated with abnormal expression of key factors involved in X chromosome activity and genomic imprinting.

4.
Animals (Basel) ; 10(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255250

ABSTRACT

The efficiency of producing embryos using in vitro technologies in livestock species rarely exceeds the 30-40% threshold, indicating that the proportion of oocytes that fail to develop after in vitro fertilization and culture is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting blastocyst yield, the precise identification of noninvasive cellular or molecular markers that predict oocyte competence is of major interest to research and practical applications. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, large number of surrounding cumulus cells, slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better competence. In addition, the combination of oocyte and zygote selection via brilliant cresyl blue (BCB) test, spindle imaging, and the anti-Stokes Raman scattering microscopy together with studies decoding molecular cues in oocyte maturation have the potential to further optimize the identification of oocytes with better developmental competence for in-vitro-derived technologies in livestock species.

5.
J Equine Vet Sci ; 90: 102962, 2020 07.
Article in English | MEDLINE | ID: mdl-32534761

ABSTRACT

Equine represents an attractive animal model for musculoskeletal tissue diseases, exhibiting much similarity to the injuries that occur in humans. Cell therapy and tissue bioengineering have been widely used as a therapeutic alternative by regenerative medicine in musculoskeletal diseases. Thus, the aim of this study was to produce an acellular biomaterial of equine skeletal muscle and to evaluate its effectiveness in supporting the in vitro culture of equine induced pluripotency stem cells (iPSCs). Biceps femoris samples were frozen at -20°C for 4 days and incubated in 1% sodium dodecyl sulfate (SDS), 5 mM EDTA + 50 mM Tris and 1% Triton X-100; the effectiveness of the decellularization was evaluated by the absence of remnant nuclei (histological and 4',6-diamidino-2-phenylindole [DAPI] analysis), preservation of extracellular matrix (ECM) proteins (immunofluorescence and immunohistochemistry) and organization of ECM ultrastructure (scanning electron microscopy). Decellularized samples were recellularized with iPSCs at the concentration of 50,000 cells/cm2 and cultured in vitro for 9 days, and the presence of the cells in the biomaterial was evaluated by histological analysis and presence of nuclei. Decellularized biomaterial showed absence of remnant nuclei and muscle fibers, as well as the preservation of ECM architecture, vascular network and proteins, laminin, fibronectin, elastin, collagen III and IV. After cellularization, iPSC nuclei were present at 9 days after incubation, indicating the decellularized biomaterial-supported iPSC survival. It is concluded that the ECM biomaterial produced from the decellularized equine skeletal muscle has potential for iPSC adhesion, representing a promising biomaterial for regenerative medicine in the therapy of musculoskeletal diseases.


Subject(s)
Biocompatible Materials , Extracellular Matrix , Animals , Collagen , Horses , Muscle, Skeletal , Octoxynol
6.
Biol Reprod ; 102(1): 211-219, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31504208

ABSTRACT

Cell reprogramming by somatic cell nuclear transfer and in induced pluripotent stem cells is associated with epigenetic modifications that are often incompatible with embryonic development and differentiation. For instance, aberrant DNA methylation patterns of the differentially methylated region and biallelic expression of H19-/IGF2-imprinted gene locus have been associated with abnormal growth of fetuses and placenta in several mammalian species. However, cloned horses are born with normal sizes and with no apparent placental anomalies, suggesting that H19/IGF2 imprinting may be epigenetically stable after reprogramming in this species. In light of this, we aimed at characterizing the equid H19 gene to determine whether imprinting is altered in somatic cell nuclear transfer (SCNT)-derived conceptuses and induced pluripotent stem cell (iPSC) lines using the mule hybrid model. A CpG-rich region containing five CTCF binding sites was identified upstream of the equine H19 gene and analyzed by bisulfite sequencing. Coupled with parent-specific and global H19 transcript analysis, we found that the imprinted H19 remains monoallelic and that on average the methylation levels of both parental differentially methylated regions in embryonic and extra-embryonic SCNT tissues and iPSC lines remained unaltered after reprogramming. Together, these results show that, compared to other species, equid somatic cells are more resilient to epigenetic alterations to the H19-imprinted locus during SCNT and iPSC reprogramming.


Subject(s)
Cellular Reprogramming/physiology , Induced Pluripotent Stem Cells/metabolism , RNA, Long Noncoding/metabolism , Animals , Female , Genomic Imprinting , Horses , Nuclear Transfer Techniques , Oocytes/metabolism , Ovary/metabolism , RNA, Long Noncoding/genetics
7.
Front Genet ; 6: 58, 2015.
Article in English | MEDLINE | ID: mdl-25763013

ABSTRACT

Animal breeders have made widespread use of assisted reproductive technologies to accelerate genetic improvement programs aimed at obtaining more, better and cheaper food products. Selection approaches have traditionally focused on Mendel's laws of inheritance using parental phenotypic characteristics and quantitative genetics approaches to choose the best parents for the next generation, regardless of their gender. However, apart from contributing DNA sequence variants, male and female gametes carry parental-specific epigenetic marks that play key roles during pre- and post-natal development and growth of the offspring. We herein review the epigenetic anomalies that are associated with artificial reproductive technologies in current use in animal breeding programs. For instance, we demonstrate that bovine embryos and fetuses derived by in vitro culture and somatic cell nuclear transfer show epigenetic anomalies in the differentially methylated regions controlling the expression of some imprinted genes. Although these genomic imprinting errors are undetected in the somatic tissues after birth, further research is warranted to examine potential germ cell transmission of epimutations and the potential risks of reproducing cattle using artificial reproductive technologies.

8.
BMC Dev Biol ; 9: 9, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19200381

ABSTRACT

BACKGROUND: Embryo in vitro manipulations during early development are thought to increase mortality by altering the epigenetic regulation of some imprinted genes. Using a bovine interspecies model with a single nucleotide polymorphism, we assessed the imprinting status of the small nuclear ribonucleoprotein polypeptide N (SNRPN) gene in bovine embryos produced by artificial insemination (AI), in vitro culture (IVF) and somatic cell nuclear transfer (SCNT) and correlated allelic expression with the DNA methylation patterns of a differentially methylated region (DMR) located on the SNRPN promoter. RESULTS: In the AI group, SNRPN maternal expression is silenced at day 17 and 40 of development and a third of the alleles analyzed are methylated in the DMR. In the IVF group, maternal transcripts were identified at day 17 but methylation levels were similar to the AI group. However, day-40 fetuses in the IVF group showed significantly less methylation when compared to the AI group and SNRPN expression was mostly paternal in all fetal tissues studied, except in placenta. Finally, the SCNT group presented severe loss of DMR methylation in both day-17 embryos and 40 fetuses and biallelic expression was observed in all stages and tissues analyzed. CONCLUSION: Together these results suggest that artificial reproductive techniques, such as prolonged in vitro culture and SCNT, lead to abnormal reprogramming of imprinting of SNRPN gene by altering methylation levels at this locus.


Subject(s)
Embryo Implantation , Genomic Imprinting/genetics , snRNP Core Proteins/genetics , Amino Acid Sequence , Animals , Cattle , DNA Methylation , Female , Insemination, Artificial , Molecular Sequence Data , Nuclear Transfer Techniques , Pregnancy , Sequence Homology, Amino Acid , Time Factors
9.
Cloning Stem Cells ; 9(4): 512-22, 2007.
Article in English | MEDLINE | ID: mdl-18154512

ABSTRACT

Despite significant advances achieved through gene targeting in mouse embryonic stem (ES) cells, this technology is presently only available in mice. Because the rat is a species of undeniable importance to biomedical research, attempts at derivation of rat ES cell lines have been ongoing for many years; however, the putative rat ES cell lines that have been reported to date have not yet displayed the ability to contribute in vivo to developing tissues following embryo injection. In contrast to previous studies, we describe herein the successful derivation and characterization of rat ES-like cell lines that not only express markers of undifferentiated cells, alkaline phosphatase (AP) activity and stage-specific embryonic antigen-1 (SSEA-1) cell surface antigen, but also retain expression of Oct4 (also known as Pou5f1) a homeodomain transcription factor and molecular marker of pluripotent cells. Notably, these rat ES-like cells, when injected into blastocysts transferred to pseudopregnant females, can contribute to developing extraembryonic tissues. This report demonstrates for the first time that rat ES-like cells can be derived efficiently, can express a panel of pluripotent cell markers, can be genetically modified in vitro and cryopreserved, and importantly, are capable of contributing to extraembryonic tissues in vivo.


Subject(s)
Blastocyst/cytology , Cell Culture Techniques/methods , Embryo Transfer/methods , Embryonic Stem Cells/cytology , Alkaline Phosphatase/metabolism , Animals , Cell Differentiation , Cryopreservation/methods , Female , Lewis X Antigen/biosynthesis , Microsatellite Repeats , Octamer Transcription Factor-3/biosynthesis , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley
10.
Biol Reprod ; 75(4): 531-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16790688

ABSTRACT

Findings from recent studies have suggested that the low survival rate of animals derived via somatic cell nuclear transfer (SCNT) may be in part due to epigenetic abnormalities brought about by this procedure. DNA methylation is an epigenetic modification of DNA that is implicated in the regulation of imprinted genes. Genes subject to genomic imprinting are expressed monoallelically in a parent of origin-dependent manner and are important for embryo growth, placental function, and neurobehavioral processes. The vast majority of imprinted genes have been studied in mice and humans. Herein, our objectives were to characterize the bovine SNRPN gene in gametes and to compare its methylation profile in in vivo-produced, in vitro-produced, and SCNT-derived Day 17 elongating embryos. A CpG island within the 5' region of SNRPN was identified and examined using bisulfite sequencing. SNRPN alleles were unmethylated in sperm, methylated in oocytes, and approximately 50% methylated in somatic samples. The examined SNRPN region appeared for the most part to be normally methylated in three in vivo-produced Day 17 embryos and in eight in vitro-produced Day 17 embryos examined, while alleles from Day 17 SCNT embryos were severely hypomethylated in seven of eight embryos. In this study, we showed that the SNRPN methylation profiles previously observed in mouse and human studies are also conserved in cattle. Moreover, SCNT-derived Day 17 elongating embryos were abnormally hypomethylated compared with in vivo-produced and in vitro-produced embryos, which in turn suggests that SCNT may lead to faulty reprogramming or maintenance of methylation imprints at this locus.


Subject(s)
Autoantigens/metabolism , DNA Methylation , Embryo, Mammalian/physiology , Oocytes/physiology , Ribonucleoproteins, Small Nuclear/metabolism , Animals , Autoantigens/genetics , Base Sequence , Cattle , Cell Nucleus , Cloning, Organism , Conserved Sequence , Embryo Transfer , Female , Fertilization in Vitro/methods , Male , Molecular Sequence Data , Pregnancy , Ribonucleoproteins, Small Nuclear/genetics , Sequence Homology, Nucleic Acid , Spermatozoa/physiology , snRNP Core Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...