Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biol Endocrinol ; 8: 147, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21122138

ABSTRACT

BACKGROUND: Recent data provide significant evidence to support the hypothesis that there are sub-populations of cells within solid tumors that have an increased tumor initiating potential relative to the total tumor population. CD133, a cell surface marker expressed on primitive cells of neural, hematopoietic, endothelial and epithelial lineages has been identified as a marker for tumor initiating cells in solid tumors of the brain, colon, pancreas, ovary and endometrium. Our objectives were to assess the relative level of CD133 expressing cells in primary human endometrial tumors, confirm their tumorigenic potential, and determine whether CD133 expression was epigenetically modified. METHODS: We assessed CD133 expression in primary human endometrial tumors by flow cytometry and analyzed the relative tumorigenicity of CD133+ and CD133- cells in an in vivo NOD/SCID mouse model. We assessed potential changes in CD133 expression over the course of serial transplantation by immunofluorescence and flow cytometry. We further examined CD133 promoter methylation and expression in normal endometrium and malignant tumors. RESULTS: As determined by flow cytometric analysis, the percentage of CD133+ cells in primary human endometrial cancer samples ranged from 5.7% to 27.4%. In addition, we confirmed the tumor initiating potential of CD133+ and CD133- cell fractions in NOD/SCID mice. Interestingly, the percentage of CD133+ cells in human endometrial tumor xenografts, as evidenced by immunofluorescence, increased with serial transplantation although this trend was not consistently detected by flow cytometry. We also determined that the relative levels of CD133 increased in endometrial cancer cell lines following treatment with 5-aza-2'-deoxycytidine suggesting a role for methylation in the regulation of CD133. To support this finding, we demonstrated that regions of the CD133 promoter were hypomethylated in malignant endometrial tissue relative to benign control endometrial tissue. Lastly, we determined that methylation of the CD133 promoter decreases over serial transplantation of an endometrial tumor xenograft. CONCLUSIONS: These findings support the hypotheses that CD133 expression in endometrial cancer may be epigenetically regulated and that cell fractions enriched for CD133+ cells may well contribute to endometrial cancer tumorigenicity, pathology and recurrence.


Subject(s)
Antigens, CD/genetics , Cell Transformation, Neoplastic/pathology , Endometrial Neoplasms/pathology , Epigenomics , Glycoproteins/genetics , Neoplastic Stem Cells/pathology , Peptides/genetics , AC133 Antigen , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Decitabine , Endometrial Neoplasms/genetics , Endometrial Neoplasms/immunology , Endometrial Neoplasms/metabolism , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Neoplastic Stem Cells/immunology
2.
Stem Cells ; 27(12): 2875-83, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19816957

ABSTRACT

Evidence is accumulating that solid tumors contain a rare phenotypically distinct population of cells, termed cancer stem cells (CSC), which give rise to and maintain the bulk of the tumor. These CSC are thought to be resistant to current chemotherapeutic strategies due to their intrinsic stem-like properties and thus may provide the principal driving force behind recurrent tumor growth. Given the high frequency of recurrent metastasis associated with human ovarian cancer, we sought to determine whether primary human ovarian tumors contain populations of cells with enhanced tumor-initiating capacity, a characteristic of CSC. Using an in vivo serial transplantation model, we show that primary uncultured human ovarian tumors can be reliably propagated in NOD/SCID mice, generating heterogeneous tumors that maintain the histological integrity of the parental tumor. The observed frequency of tumor engraftment suggests only certain subpopulations of ovarian tumor cells have the capacity to recapitulate tumor growth. Further profiling of human ovarian tumors for expression of candidate CSC surface markers indicated consistent expression of CD133. To determine whether CD133 expression could define a tumor-initiating cell population in primary human ovarian tumors, fluorescence-activated cell sorting (FACS) methods were employed. Injection of sorted CD133(+) and CD133(-) cell populations into NOD/SCID mice established that tumor-derived CD133(+) cells have an increased tumorigenic capacity and are capable of recapitulating the original heterogeneous tumor. Our data indicate that CD133 expression defines a NOD/SCID tumor initiating subpopulation of cells in human ovarian cancer that may be an important target for new chemotherapeutic strategies aimed at eliminating ovarian cancer.


Subject(s)
Antigens, CD/metabolism , Glycoproteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Peptides/metabolism , AC133 Antigen , Animals , Biomarkers, Tumor/metabolism , Cell Count , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...