Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 92(20)2018 10 15.
Article in English | MEDLINE | ID: mdl-30068646

ABSTRACT

Following attachment to host receptors via σ1, reovirus particles are endocytosed and disassembled to generate infectious subvirion particles (ISVPs). ISVPs undergo conformational changes to form ISVP*, releasing σ1 and membrane-targeting peptides from the viral µ1 protein. ISVP* formation is required for delivery of the viral core into the cytoplasm for replication. We characterized the properties of T3DF/T3DCS1, an S1 gene monoreassortant between two laboratory isolates of prototype reovirus strain T3D: T3DF and T3DC T3DF/T3DCS1 is poorly infectious. This deficiency is a consequence of inefficient encapsidation of S1-encoded σ1 on T3DF/T3DCS1 virions. Additionally, compared to T3DF, T3DF/T3DCS1 undergoes ISVP-to-ISVP* conversion more readily, revealing an unexpected role for σ1 in regulating ISVP* formation. The σ1 protein is held within turrets formed by the λ2 protein. To test if the altered properties of T3DF/T3DCS1 are due to a mismatch between σ1 and λ2 proteins from T3DF and T3DC, properties of T3DF/T3DCL2 and T3DF/T3DCS1L2, which express a T3DC-derived λ2, were compared. The presence of T3DC λ2 allowed more efficient σ1 incorporation, producing particles that exhibit T3DF-like infectivity. Compared to T3DF, T3DF/T3DCL2 prematurely converts to ISVP*, uncovering a role for λ2 in regulating ISVP* formation. Importantly, a virus with matching σ1 and λ2 displayed a more regulated conversion to ISVP* than either T3DF/T3DCS1 or T3DF/T3DCL2. In addition to identifying new regulators of ISVP* formation, our results highlight that protein mismatches produced by reassortment can alter virus assembly and thereby influence subsequent functions of the virus capsid.IMPORTANCE Cells coinfected with viruses that possess a multipartite or segmented genome reassort to produce progeny viruses that contain a combination of gene segments from each parent. Reassortment places new pairs of genes together, generating viruses in which mismatched proteins must function together. To test if such forced pairing of proteins that form the virus shell or capsid alters the function of the particle, we investigated properties of reovirus variants in which the σ1 attachment protein and the λ2 protein that anchors σ1 on the particle are mismatched. Our studies demonstrate that a σ1-λ2 mismatch produces particles with lower levels of encapsidated σ1, consequently decreasing virus attachment and infectivity. The mismatch between σ1 and λ2 also altered the capacity of the viral capsid to undergo conformational changes required for cell entry. These studies reveal new functions of reovirus capsid proteins and illuminate both predictable and novel implications of reassortment.


Subject(s)
Capsid/physiology , Mammalian orthoreovirus 3/physiology , Reassortant Viruses/physiology , Viral Structural Proteins/metabolism , Virus Assembly , Virus Internalization , Animals , Cell Line , Endocytosis , Mammalian orthoreovirus 3/genetics , Mice , Reassortant Viruses/genetics
2.
J Virol ; 91(6)2017 03 15.
Article in English | MEDLINE | ID: mdl-28077640

ABSTRACT

Necroptosis, a regulated form of necrotic cell death, requires the activation of the RIP3 kinase. Here, we identify that infection of host cells with reovirus can result in necroptosis. We find that necroptosis requires sensing of the genomic RNA within incoming virus particles via cytoplasmic RNA sensors to produce type I interferon (IFN). While these events that occur prior to the de novo synthesis of viral RNA are required for the induction of necroptosis, they are not sufficient. The induction of necroptosis also requires late stages of reovirus infection. Specifically, efficient synthesis of double-stranded RNA (dsRNA) within infected cells is required for necroptosis. These data indicate that viral RNA interfaces with host components at two different stages of infection to induce necroptosis. This work provides new molecular details about events in the viral replication cycle that contribute to the induction of necroptosis following infection with an RNA virus.IMPORTANCE An appreciation of how cell death pathways are regulated following viral infection may reveal strategies to limit tissue destruction and prevent the onset of disease. Cell death following virus infection can occur by apoptosis or a regulated form of necrosis known as necroptosis. Apoptotic cells are typically disposed of without activating the immune system. In contrast, necroptotic cells alert the immune system, resulting in inflammation and tissue damage. While apoptosis following virus infection has been extensively investigated, how necroptosis is unleashed following virus infection is understood for only a small group of viruses. Here, using mammalian reovirus, we highlight the molecular mechanism by which infection with a dsRNA virus results in necroptosis.


Subject(s)
Cell Death , Host-Pathogen Interactions , Immunity, Innate , RNA, Viral/metabolism , Reoviridae/immunology , Reoviridae/physiology , Animals , Cell Line , Fibroblasts/immunology , Fibroblasts/physiology , Fibroblasts/virology , Mice
3.
J Virol ; 90(23): 10951-10962, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27681135

ABSTRACT

Proteins that form the reovirus outer capsid play an active role in the entry of reovirus into host cells. Among these, the σ1 protein mediates attachment of reovirus particles to host cells via interaction with cell surface glycans or the proteinaceous receptor junctional adhesion molecule A (JAM-A). The µ1 protein functions to penetrate the host cell membrane to allow delivery of the genome-containing viral core particle into the cytoplasm to initiate viral replication. We demonstrate that a reassortant virus that expresses the M2 gene-encoded µ1 protein derived from prototype strain T3D in an otherwise prototype T1L background (T1L/T3DM2) infects cells more efficiently than parental T1L. Unexpectedly, the enhancement in infectivity of T1L/T3DM2 is due to its capacity to attach to cells more efficiently. We present genetic data implicating the central region of µ1 in altering the cell attachment property of reovirus. Our data indicate that the T3D µ1-mediated enhancement in infectivity of T1L is dependent on the function of σ1 and requires the expression of JAM-A. We also demonstrate that T1L/T3DM2 utilizes JAM-A more efficiently than T1L. These studies revealed a previously unknown relationship between two nonadjacent reovirus outer capsid proteins, σ1 and µ1. IMPORTANCE: How reovirus attaches to host cells has been extensively characterized. Attachment of reovirus to host cells is mediated by the σ1 protein, and properties of σ1 influence the capacity of reovirus to target specific host tissues and produce disease. Here, we present new evidence indicating that the cell attachment properties of σ1 are influenced by the nature of µ1, a capsid protein that does not physically interact with σ1. These studies could explain the previously described role for µ1 in influencing reovirus pathogenesis. These studies are also of broader significance because they highlight an example of how genetic reassortment between virus strains could produce phenotypes that are distinct from those of either parent.


Subject(s)
Capsid Proteins/physiology , Mammalian orthoreovirus 3/physiology , Mammalian orthoreovirus 3/pathogenicity , Animals , Capsid Proteins/genetics , Cell Adhesion Molecules/physiology , Cell Line , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Mammalian orthoreovirus 3/genetics , Mice , Orthoreovirus, Mammalian/genetics , Orthoreovirus, Mammalian/pathogenicity , Orthoreovirus, Mammalian/physiology , Receptors, Cell Surface/physiology , Receptors, Virus/physiology , Reoviridae Infections/etiology , Reoviridae Infections/virology , Virulence/genetics , Virulence/physiology , Virus Attachment
4.
Virology ; 483: 291-301, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26004253

ABSTRACT

During cell entry, reovirus particles disassemble to generate ISVPs. ISVPs undergo conformational changes to form ISVP(*) and this conversion is required for membrane penetration. In tissues where ISVP formation occurs within endosomes, ISVP-to-ISVP(*) conversion occurs at low pH. In contrast, in tissues where ISVP formation occurs extracellularly, ISVP-to-ISVP(*) transition occurs at neutral pH. Whether these two distinct pH environments influence the efficiency of cell entry is not known. In this study, we used Ouabain to lower the endosomal pH and determined its effect on reovirus infection. We found that Ouabain treatment blocks reovirus infection. In cells treated with Ouabain, virus attachment, internalization, and ISVP formation were unaffected but the efficiency of ISVP(*)s formation was diminished. Low pH also diminished the efficiency of ISVP-to-ISVP(*) conversion in vitro. Thus, the pH of the compartment where ISVP-to-ISVP(*) conversion takes place may dictate the efficiency of reovirus infection.


Subject(s)
Endosomes/virology , Reoviridae/chemistry , Reoviridae/physiology , Virus Internalization , Animals , Cell Line , Enzyme Inhibitors/metabolism , Hydrogen-Ion Concentration , Mice , Ouabain/metabolism , Reoviridae/drug effects
5.
Mol Microbiol ; 68(4): 871-89, 2008 May.
Article in English | MEDLINE | ID: mdl-18363796

ABSTRACT

Bacteria that survive under variable conditions possess an assortment of genetic regulators to meet these challenges. The group IV or extracytoplasmic function (ECF) sigma factors regulate gene expression in response to specific environmental signals by altering the promoter specificity of RNA polymerase. We have undertaken a study of PvdS, a group IV sigma factor encoded by Pseudomonas syringae pv. tomato DC3000 (DC3000), a plant pathogen that is likely to encounter variations in nutrient availability as well as plant host defences. The gene encoding PvdS was previously identified by sequence similarity to the Pseudomonas aeruginosa orthologue, which directs transcription of genes encoding the biosynthesis of pyoverdine, a siderophore involved in iron acquisition, and is responsible for the characteristic fluorescence of the pseudomonads. We identified 15 promoters regulated by PvdS in DC3000 and characterized the promoter motif using computational analysis. Mutagenesis of conserved nucleotides within the motif interfered with promoter function and the degree of the effect was different depending on which region of the motif was mutated. Hidden Markov models constructed from alignments of sequence motifs extracted from DC3000 and PAO1 were used to query genomes of DC3000 and other fluorescent pseudomonads for similar motifs. We conclude that the role of PvdS as a regulator of pyoverdine synthesis is conserved among the fluorescent pseudomonads, but the promoters recognized by PvdS orthologues may differ subtly from species to species.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Pseudomonas syringae/genetics , Regulon , Sigma Factor/metabolism , Bacterial Proteins/genetics , Base Sequence , Consensus Sequence , Genome, Bacterial/genetics , Markov Chains , Molecular Sequence Data , Mutagenesis , Oligopeptides/biosynthesis , Oligopeptides/genetics , Promoter Regions, Genetic , Pseudomonas/genetics , Sigma Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...