Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 228(1): e13334, 2020 01.
Article in English | MEDLINE | ID: mdl-31188544

ABSTRACT

AIM: Claudin-15 is mainly expressed in the small intestine and indirectly involved in glucose absorption. Similar to claudin-2 and -10b, claudin-15 is known to form a paracellular channel for small cations. Claudin-2, but not claudin-10b, also forms water channels. Here we experimentally tested whether claudin-15 also mediates water transport and if yes, whether water transport is Na+ -coupled, as seen for claudin-2. METHODS: MDCK C7 cells were stably transfected with claudin-15. Ion and water permeability were investigated in confluent monolayers of control and claudin-15-expressing cells. Water flux was induced by an osmotic or ionic gradient. RESULTS: Expression of claudin-15 in MDCK cells strongly increased cation permeability. The permeability ratios for monovalent cations indicated a passage of partially hydrated ions through the claudin-15 pore. Accordingly, its pore diameter was determined to be larger than that of claudin-2 and claudin-10b. Mannitol-induced water flux was elevated in claudin-15-expressing cells compared to control cells. In contrast to the Na+ -coupled water flux of claudin-2 channels, claudin-15-mediated water flux was inhibited by Na+ flux. Consequently, water flux was increased in Na+ -free solution. Likewise, Na+ flux was decreased after induction of water flux through claudin-15. CONCLUSION: Claudin-15, similar to claudin-2, forms a paracellular cation and water channel. In functional contrast to claudin-2, water and Na+ fluxes through claudin-15 inhibit each other. Claudin-15 allows Na+ to retain part of its hydration shell within the pore. This then reduces the simultaneous passage of additional water through the pore.


Subject(s)
Claudin-2/metabolism , Claudins/metabolism , Tight Junctions/physiology , Water/metabolism , Animals , Aquaporins/genetics , Aquaporins/metabolism , Claudin-2/genetics , Dogs , Gene Expression Regulation , Madin Darby Canine Kidney Cells , Sodium , Tight Junction Proteins
2.
Ann N Y Acad Sci ; 1397(1): 100-109, 2017 06.
Article in English | MEDLINE | ID: mdl-28636801

ABSTRACT

Physiological studies in leaky epithelia, like kidney proximal tubules and the small intestine, have documented water transport via both transcellular and paracellular pathways. The discovery of aquaporin water channels provided a molecular basis for transcellular water movement. In contrast, the contribution, or even existence, of a specific paracellular water pathway has been disputed for a long time, until the cation channel-forming tight junction protein claudin-2 was shown to also permit the paracellular passage of water through its pore. In proximal kidney tubules, claudin-2-based water transport contributes 23-30% of the total water transport. Other paracellular ion channels (claudin-10a, -10b, and -17) proved to be impermeable to water, although their pore size would be sufficient for water molecules to pass. Studies of barrier-forming claudins, like claudin-1 and claudin-3, which tighten the paracellular pathway against ions and larger solutes, indicate that changes in the expression of these sealing claudins do not influence transepithelial water permeability. The present genetic, molecular, computational, and physiological studies are just now beginning to probe the mechanisms and regulation of paracellular permeation.


Subject(s)
Aquaporins/metabolism , Claudin-2/metabolism , Claudins/metabolism , Tight Junctions/metabolism , Water/metabolism , Animals , Biological Transport , Humans , Kidney Tubules, Proximal/metabolism , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...