Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109569, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38623329

ABSTRACT

Preeclampsia (PE) is a hypertensive pregnancy disorder with increased risk of maternal and fetal morbidity and mortality. Abnormal extravillous trophoblast (EVT) development and function is considered to be the underlying cause of PE, but has not been previously modeled in vitro. We previously derived induced pluripotent stem cells (iPSCs) from placentas of PE patients and characterized abnormalities in formation of syncytiotrophoblast and responses to changes in oxygen tension. In this study, we converted these primed iPSC to naïve iPSC, and then derived trophoblast stem cells (TSCs) and EVT to evaluate molecular mechanisms underlying PE. We found that primed (but not naïve) iPSC-derived PE-EVT have reduced surface HLA-G, blunted invasive capacity, and altered EVT-specific gene expression. These abnormalities correlated with promoter hypermethylation of genes associated with the epithelial-mesenchymal transition pathway, specifically in primed-iPSC derived PE-EVT. Our findings indicate that abnormal epigenetic regulation might play a role in PE pathogenesis.

2.
Nat Commun ; 15(1): 668, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253551

ABSTRACT

Human naïve pluripotent stem cells (hnPSCs) can generate integrated models of blastocysts termed blastoids upon switch to inductive medium. However, the underlying mechanisms remain obscure. Here we report that self-renewing hnPSCs spontaneously and efficiently give rise to blastoids upon three dimensional (3D) suspension culture. The spontaneous blastoids mimic early stage human blastocysts in terms of structure, size, and transcriptome characteristics and are capable of progressing to post-implantation stages. This property is conferred by the glycogen synthase kinase-3 (GSK3) signalling inhibitor IM-12 present in 5iLAF self-renewing medium. IM-12 upregulates oxidative phosphorylation-associated genes that underly the capacity of hnPSCs to generate blastoids spontaneously. Starting from day one of self-organization, hnPSCs at the boundary of all 3D aggregates dedifferentiate into E5 embryo-like intermediates. Intermediates co-express SOX2/OCT4 and GATA6 and by day 3 specify trophoblast fate, which coincides with cavity and blastoid formation. In summary, spontaneous blastoid formation results from 3D culture triggering dedifferentiation of hnPSCs into earlier embryo-like intermediates which are then competent to segregate blastocyst fates.


Subject(s)
Glycogen Synthase Kinase 3 , Pluripotent Stem Cells , Humans , Glycogen Synthase Kinase 3/genetics , Blastocyst , Embryo Implantation , Embryo, Mammalian
3.
Methods Mol Biol ; 2767: 85-103, 2024.
Article in English | MEDLINE | ID: mdl-37402094

ABSTRACT

The human placenta is a transient organ that functions to support the needs of the fetus throughout gestation. Trophoblasts are the major epithelial cells found within the placenta and comprise a variety of distinct cell types with specialized roles in fetal-maternal communication. Our understanding of human trophoblast development remains limited due to ethical and legal restrictions on accessing first-trimester placental tissues, as well as the inability of common animal models to replicate primate placental development. It is therefore important to advance in vitro models of human trophoblast development as a basis for studying pregnancy-associated complications and diseases. In this chapter, we describe a protocol for generating 3D trophoblast organoids from naïve human pluripotent stem cells (hPSCs). The resulting stem-cell-derived trophoblast organoids (SC-TOs) contain distinct cytotrophoblast (CTB), syncytiotrophoblast (STB), and extravillous trophoblast (EVT) cell types, which closely correspond to trophoblast identities in the human post-implantation embryo. We discuss methods for characterizing SC-TOs by immunofluorescence, flow cytometry, mRNA and microRNA expression profiling, and placental hormone secretion. Furthermore, SC-TOs can undergo differentiation into specialized 3D EVT organoids, which display robust invasion when co-cultured with human endometrial cells. Thus, the protocol described herein offers an accessible 3D model system of human placental development and trophoblast invasion.


Subject(s)
Placenta , Pluripotent Stem Cells , Pregnancy , Humans , Female , Trophoblasts , Pregnancy Trimester, First , Cell Differentiation , Organoids
4.
Cell Stem Cell ; 30(9): 1148-1165.e7, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37683602

ABSTRACT

Naive human pluripotent stem cells have the remarkable ability to self-organize into blastocyst-like structures ("blastoids") that model lineage segregation in the pre-implantation embryo. However, the extent to which blastoids can recapitulate the defining features of human post-implantation development remains unexplored. Here, we report that blastoids cultured on thick three-dimensional (3D) extracellular matrices capture hallmarks of early post-implantation development, including epiblast lumenogenesis, rapid expansion and diversification of trophoblast lineages, and robust invasion of extravillous trophoblast cells by day 14. Extended blastoid culture results in the localized activation of primitive streak marker TBXT and the emergence of embryonic germ layers by day 21. We also show that the modulation of WNT signaling alters the balance between epiblast and trophoblast fates in post-implantation blastoids. This work demonstrates that 3D-cultured blastoids offer a continuous and integrated in vitro model system of human embryonic and extraembryonic development from pre-implantation to early gastrulation stages.


Subject(s)
Embryo Implantation , Gastrulation , Humans , Embryo, Mammalian , Blastocyst , Epithelial Cells
5.
Curr Opin Genet Dev ; 82: 102096, 2023 10.
Article in English | MEDLINE | ID: mdl-37597506

ABSTRACT

Stem-cell-based embryo models generate much excitement as they offer a window into an early phase of human development that has remained largely inaccessible to scientific investigation. An important epigenetic phenomenon during early embryogenesis is the epigenetic silencing of one of the two X chromosomes in female embryos, which ensures an equal output of X-linked gene expression between the sexes. X-chromosome inactivation (XCI) is thought to be established within the first three weeks of human development, although the inactive X-chromosome is reactivated in primordial germ cells (PGCs) that migrate to the embryonic gonads. Here, we summarize our current understanding of X-chromosome dynamics during human development and comment on the potential of recently established stem-cell-based models to reveal the underlying mechanisms.


Subject(s)
X Chromosome Inactivation , X Chromosome , Humans , Female , X Chromosome Inactivation/genetics , Embryo, Mammalian , Embryonic Development/genetics , Epigenesis, Genetic
6.
Cell Mol Life Sci ; 79(12): 604, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434136

ABSTRACT

Trophoblasts are specialized epithelial cells that perform critical functions during blastocyst implantation and mediate maternal-fetal communication during pregnancy. However, our understanding of human trophoblast biology remains limited since access to first-trimester placental tissue is scarce, especially between the first and fourth weeks of development. Moreover, animal models inadequately recapitulate unique aspects of human placental physiology. In the mouse system, the isolation of self-renewing trophoblast stem cells has provided a valuable in vitro model system of placental development, but the derivation of analogous human trophoblast stem cells (hTSCs) has remained elusive until recently. Building on a landmark study reporting the isolation of bona fide hTSCs from blastocysts and first-trimester placental tissues in 2018, several groups have developed methods to derive hTSCs from pluripotent and somatic cell sources. Here we review the biological and molecular properties that define authentic hTSCs, the trophoblast potential of distinct pluripotent states, and methods for inducing hTSCs in somatic cells by direct reprogramming. The generation of hTSCs from pluripotent and somatic cells presents exciting opportunities to elucidate the molecular mechanisms of human placental development and the etiology of pregnancy-related diseases.


Subject(s)
Placenta , Trophoblasts , Humans , Female , Mice , Pregnancy , Animals , Cell Differentiation , Stem Cells , Placentation
7.
Nat Commun ; 13(1): 2548, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538076

ABSTRACT

The recent derivation of human trophoblast stem cells (hTSCs) provides a scalable in vitro model system of human placental development, but the molecular regulators of hTSC identity have not been systematically explored thus far. Here, we utilize a genome-wide CRISPR-Cas9 knockout screen to comprehensively identify essential and growth-restricting genes in hTSCs. By cross-referencing our data to those from similar genetic screens performed in other cell types, as well as gene expression data from early human embryos, we define hTSC-specific and -enriched regulators. These include both well-established and previously uncharacterized trophoblast regulators, such as ARID3A, GATA2, and TEAD1 (essential), and GCM1, PTPN14, and TET2 (growth-restricting). Integrated analysis of chromatin accessibility, gene expression, and genome-wide location data reveals that the transcription factor TEAD1 regulates the expression of many trophoblast regulators in hTSCs. In the absence of TEAD1, hTSCs fail to complete faithful differentiation into extravillous trophoblast (EVT) cells and instead show a bias towards syncytiotrophoblast (STB) differentiation, thus indicating that this transcription factor safeguards the bipotent lineage potential of hTSCs. Overall, our study provides a valuable resource for dissecting the molecular regulation of human placental development and diseases.


Subject(s)
Placenta , Trophoblasts , CRISPR-Cas Systems , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Humans , Placenta/metabolism , Pregnancy , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Trophoblasts/metabolism
8.
Cell Stem Cell ; 29(5): 810-825.e8, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35523141

ABSTRACT

Trophoblast organoids derived from placental villi provide a 3D model system of human placental development, but access to first-trimester tissues is limited. Here, we report that trophoblast stem cells isolated from naive human pluripotent stem cells (hPSCs) can efficiently self-organize into 3D stem-cell-derived trophoblast organoids (SC-TOs) with a villous architecture similar to primary trophoblast organoids. Single-cell transcriptome analysis reveals the presence of distinct cytotrophoblast and syncytiotrophoblast clusters and a small cluster of extravillous trophoblasts, which closely correspond to trophoblast identities in the post-implantation embryo. These organoid cultures display clonal X chromosome inactivation patterns previously described in the human placenta. We further demonstrate that SC-TOs exhibit selective vulnerability to emerging pathogens (SARS-CoV-2 and Zika virus), which correlates with expression levels of their respective entry factors. The generation of trophoblast organoids from naive hPSCs provides an accessible 3D model system of the developing placenta and its susceptibility to emerging pathogens.


Subject(s)
COVID-19 , Pluripotent Stem Cells , Zika Virus Infection , Zika Virus , Cell Differentiation , Female , Humans , Organoids , Placenta/metabolism , Placentation , Pluripotent Stem Cells/metabolism , Pregnancy , SARS-CoV-2 , Trophoblasts/metabolism , Zika Virus Infection/metabolism
9.
Methods Mol Biol ; 2416: 13-28, 2022.
Article in English | MEDLINE | ID: mdl-34870827

ABSTRACT

Prior to implantation, the cells in the mammalian epiblast constitute a naïve pluripotent state, which is distinguished by absence of lineage priming, freedom from epigenetic restriction, and expression of a unique set of transcription factors. However, human embryonic stem cells (hESCs) derived under conventional conditions have exited this naïve state and acquired a more advanced "primed" pluripotent state that corresponds to the post-implantation epiblast. We have developed a cocktail comprising five kinase inhibitors and two growth factors (5i/L/A) that enables induction of defining features of naïve pluripotency in primed hESCs. These conditions can also be applied to induce naïve pluripotency in patient-specific induced pluripotent stem cells (iPSCs). Here, we provide a detailed protocol for inducing naïve pluripotency in primed hESCs and iPSCs and methods for the routine validation of naïve identity. We also outline the use of two fluorescent reporter systems to track acquisition of naïve identity in live cells: (a) a GFP reporter linked to an endogenous OCT4 allele in which the primed-specific proximal enhancer has been deleted (OCT4-ΔPE-GFP); and (b) a dual-color reporter system targeted to both alleles of an X-linked gene that reports on the status of the X chromosome in female cells (MECP2-GFP/tdTomato). The conditions described herein have given insight into various aspects of naïve human pluripotent stem cells (hPSCs), including their unique transposon transcription profile, X chromosome status, and extraembryonic potential.


Subject(s)
Human Embryonic Stem Cells , Induced Pluripotent Stem Cells , Cell Differentiation , Female , Germ Layers , Humans , Pluripotent Stem Cells , Regulatory Sequences, Nucleic Acid
10.
Methods Mol Biol ; 2416: 91-104, 2022.
Article in English | MEDLINE | ID: mdl-34870832

ABSTRACT

The placenta is a transient organ that mediates the exchange of nutrients, gases, and waste products between the mother and the developing fetus and is indispensable for a healthy pregnancy. Epithelial cells in the placenta, which are termed trophoblasts, originate from the trophectoderm (TE) compartment of the blastocyst. The human trophoblast lineage consists of several distinct cell types, including the self-renewing and bipotent cytotrophoblast and the terminally differentiated extravillous trophoblast and syncytiotrophoblast. Despite the importance of trophoblast research, it has long been hindered by the scarce accessibility of primary tissue and the lack of a robust in vitro model system. Recently, a culture condition was developed that supports the isolation of bona fide human trophoblast stem cells (hTSCs) from human blastocysts or first-trimester placental tissues. In this chapter, we describe a protocol to derive bona fide hTSCs from naïve human pluripotent stem cells (hPSCs), thus presenting a robust methodology to generate hTSCs from a renewable and widely accessible source. This approach may be used to generate patient-specific hTSCs to study trophoblast-associated pathologies and serves as a powerful experimental platform to study the specification of human TE.


Subject(s)
Pluripotent Stem Cells , Trophoblasts , Cell Differentiation , Female , Humans , Placenta , Pregnancy , Pregnancy Trimester, First
11.
Nat Commun ; 12(1): 5123, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446700

ABSTRACT

Understanding the molecular underpinnings of pluripotency is a prerequisite for optimal maintenance and application of embryonic stem cells (ESCs). While the protein-protein interactions of core pluripotency factors have been identified in mouse ESCs, their interactome in human ESCs (hESCs) has not to date been explored. Here we mapped the OCT4 interactomes in naïve and primed hESCs, revealing extensive connections to mammalian ATP-dependent nucleosome remodeling complexes. In naïve hESCs, OCT4 is associated with both BRG1 and BRM, the two paralog ATPases of the BAF complex. Genome-wide location analyses and genetic studies reveal that these two enzymes cooperate in a functionally redundant manner in the transcriptional regulation of blastocyst-specific genes. In contrast, in primed hESCs, OCT4 cooperates with BRG1 and SOX2 to promote chromatin accessibility at ectodermal genes. This work reveals how a common transcription factor utilizes differential BAF complexes to control distinct transcriptional programs in naïve and primed hESCs.


Subject(s)
Adenosine Triphosphate/metabolism , Chromatin/metabolism , DNA Helicases/metabolism , Embryonic Stem Cells/metabolism , Nuclear Proteins/metabolism , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Transcription Factors/metabolism , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA Helicases/genetics , Gene Expression Regulation , Humans , Nuclear Proteins/genetics , Nucleosomes/genetics , Nucleosomes/metabolism , Octamer Transcription Factor-3/genetics , Protein Binding , SOXB1 Transcription Factors/genetics , Transcription Factors/genetics
12.
Cell Rep ; 35(11): 109233, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34133938

ABSTRACT

Naive human embryonic stem cells (hESCs) have been isolated that more closely resemble the pre-implantation epiblast compared to conventional "primed" hESCs, but the signaling principles underlying these discrete stem cell states remain incompletely understood. Here, we describe the results from a high-throughput screen using ∼3,000 well-annotated compounds to identify essential signaling requirements for naive human pluripotency. We report that MEK1/2 inhibitors can be replaced during maintenance of naive human pluripotency by inhibitors targeting either upstream (FGFR, RAF) or downstream (ERK1/2) kinases. Naive hESCs maintained under these alternative conditions display elevated levels of ERK phosphorylation but retain genome-wide DNA hypomethylation and a transcriptional identity of the pre-implantation epiblast. In contrast, dual inhibition of MEK and ERK promotes efficient primed-to-naive resetting in combination with PKC, ROCK, and TNKS inhibitors and activin A. This work demonstrates that induction and maintenance of naive human pluripotency are governed by distinct signaling requirements.


Subject(s)
High-Throughput Screening Assays , Pluripotent Stem Cells/metabolism , Signal Transduction , Activins/pharmacology , Cells, Cultured , Embryo Implantation/drug effects , Humans , Models, Biological , Pluripotent Stem Cells/drug effects , Signal Transduction/drug effects , raf Kinases/antagonists & inhibitors , raf Kinases/metabolism
13.
Elife ; 92020 02 12.
Article in English | MEDLINE | ID: mdl-32048992

ABSTRACT

Naïve human pluripotent stem cells (hPSCs) provide a unique experimental platform of cell fate decisions during pre-implantation development, but their lineage potential remains incompletely characterized. As naïve hPSCs share transcriptional and epigenomic signatures with trophoblast cells, it has been proposed that the naïve state may have enhanced predisposition for differentiation along this extraembryonic lineage. Here we examined the trophoblast potential of isogenic naïve and primed hPSCs. We found that naïve hPSCs can directly give rise to human trophoblast stem cells (hTSCs) and undergo further differentiation into both extravillous and syncytiotrophoblast. In contrast, primed hPSCs do not support hTSC derivation, but give rise to non-self-renewing cytotrophoblasts in response to BMP4. Global transcriptome and chromatin accessibility analyses indicate that hTSCs derived from naïve hPSCs are similar to blastocyst-derived hTSCs and acquire features of post-implantation trophectoderm. The derivation of hTSCs from naïve hPSCs will enable elucidation of early mechanisms that govern normal human trophoblast development and associated pathologies.


The placenta is one of the most important human organs, but it is perhaps the least understood. The first decision the earliest human cells have to make, shortly after the egg is fertilized by a sperm, is whether to become part of the embryo or part of the placenta. This choice happens before a pregnancy even implants into the uterus. The cells that commit to becoming the embryo transform into 'naïve pluripotent' cells, capable of becoming any cell in the body. Those that commit to becoming the placenta transform into 'trophectoderm' cells, capable of becoming the two types of cell in the placenta. Placental cells either invade into the uterus to anchor the placenta or produce hormones to support the pregnancy. Once a pregnancy implants into the uterus, the naïve pluripotent cells in the embryo become 'primed'. This prevents them from becoming cells of the placenta, and it poses a problem for placental research. In 2018, scientists in Japan reported conditions for growing trophectoderm cells in the laboratory, where they are known as "trophoblast stem cells". These cells were capable of transforming into specialized placental cells, but needed first to be isolated from the human embryo or placenta itself. Dong et al. now show how to reprogram other pluripotent cells grown in the laboratory to produce trophoblast stem cells. The first step was to reset primed pluripotent cells to put them back into a naïve state. Then, Dong et al. exposed the cells to the same concoction of nutrients and chemicals used in the 2018 study. This fluid triggered a transformation in the naïve pluripotent cells; they started to look like trophoblast stem cells, and they switched on genes normally active in trophectoderm cells. To test whether these cells had the same properties as trophoblast stem cells, Dong et al. gave them chemical signals to see if they could mature into placental cells. The stem cells were able to transform into both types of placental cell, either invading through a three-dimensional gel that mimics the wall of the uterus or making pregnancy hormones. There is a real need for a renewable supply of placental cells in pregnancy research. Animal placentas are not the same as human ones, so it is not possible to learn everything about human pregnancy from animal models. A renewable supply of trophoblast stem cells could aid in studying how the placenta forms and why this process sometimes goes wrong. This could help researchers to better understand miscarriage, pre-eclampsia and other conditions that affect the growth of an unborn baby. In the future, it may even be possible to make custom trophoblast stem cells to study the specific fertility issues of an individual.


Subject(s)
Cell Differentiation , Pluripotent Stem Cells/cytology , Stem Cells/cytology , Trophoblasts/cytology , Biomarkers/metabolism , Cell Lineage , Culture Media , Embryoid Bodies/cytology , Humans , Trophoblasts/metabolism
14.
Exp Cell Res ; 385(1): 111645, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31585117

ABSTRACT

The past decade has seen significant interest in the isolation of pluripotent stem cells corresponding to various stages of mammalian embryonic development. Two distinct and well-defined pluripotent states can be derived from mouse embryos: "naïve" pluripotent cells with properties of pre-implantation epiblast, and "primed" pluripotent cells, resembling post-implantation epiblast. Prompted by the successful interconversion between these two stem cell states in the mouse system, several groups have devised strategies for inducing a naïve state of pluripotency in human pluripotent stem cells. Here, we review recent insights into the naïve state of human pluripotency, focusing on two methods that confer defining transcriptomic and epigenomic signatures of the pre-implantation embryo. The isolation of naïve human pluripotent stem cells offers a window into early developmental mechanisms that cannot be adequately modeled in primed cells, such as X chromosome reactivation, metabolic reprogramming, and the regulation of hominid-specific transposable elements. We outline key unresolved questions regarding naïve human pluripotency, including its extrinsic and intrinsic control mechanisms, potential for embryonic and extraembryonic differentiation, and general utility as a model system for human development and disease.


Subject(s)
Pluripotent Stem Cells/cytology , Animals , Cell Differentiation/genetics , Embryonic Development/genetics , Epigenome/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Transcriptome/genetics
15.
Wellcome Open Res ; 4: 88, 2019.
Article in English | MEDLINE | ID: mdl-31363497

ABSTRACT

Background: NANOG is a homeodomain-containing transcription factor which forms one of the hubs in the pluripotency network and plays a key role in the reprogramming of somatic cells and epiblast stem cells to naïve pluripotency.  Studies have found that NANOG has many interacting partners and some of these were shown to play a role in its ability to mediate reprogramming. In this study, we set out to analyse the effect of NANOG interactors on the reprogramming process. Methods: Epiblast stem cells and somatic cells were reprogrammed to naïve pluripotency using MEK/ERK inhibitor PD0325901, GSK3ß inhibitor CHIR99021 and Leukaemia Inhibitory Factor (together termed 2i Plus LIF). Zmym2 was knocked out using the CRISPR/Cas9 system or overexpressed using the PiggyBac system. Reprogramming was quantified after ZMYM2 deletion or overexpression, in diverse reprogramming systems. In addition, embryonic stem cell self renewal was quantified in differentiation assays after ZMYM2 removal or overexpression. Results: In this work, we identified ZMYM2/ZFP198, which physically associates with NANOG as a key negative regulator of NANOG-mediated reprogramming of both epiblast stem cells and somatic cells. In addition, ZMYM2 impairs the self renewal of embryonic stem cells and its overexpression promotes differentiation. Conclusions: We propose that ZMYM2 curtails NANOG's actions during the reprogramming of both somatic cells and epiblast stem cells and impedes embryonic stem cell self renewal, promoting differentiation.

16.
Cell Stem Cell ; 24(5): 724-735.e5, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31006620

ABSTRACT

Expansion of transposable elements (TEs) coincides with evolutionary shifts in gene expression. TEs frequently harbor binding sites for transcriptional regulators, thus enabling coordinated genome-wide activation of species- and context-specific gene expression programs, but such regulation must be balanced against their genotoxic potential. Here, we show that Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) control the timely and pleiotropic activation of TE-derived transcriptional cis regulators during early embryogenesis. Evolutionarily recent SVA, HERVK, and HERVH TE subgroups contribute significantly to chromatin opening during human embryonic genome activation and are KLF-stimulated enhancers in naive human embryonic stem cells (hESCs). KZFPs of corresponding evolutionary ages are simultaneously induced and repress the transcriptional activity of these TEs. Finally, the same KZFP-controlled TE-based enhancers later serve as developmental and tissue-specific enhancers. Thus, by controlling the transcriptional impact of TEs during embryogenesis, KZFPs facilitate their genome-wide incorporation into transcriptional networks, thereby contributing to human genome regulation.


Subject(s)
Chromatin/microbiology , DNA Transposable Elements/genetics , Embryonic Stem Cells/physiology , Kruppel-Like Transcription Factors/genetics , Animals , Biological Evolution , Chromatin/genetics , Evolution, Molecular , Gene Expression Regulation , Gene Regulatory Networks , Genetic Speciation , Hominidae , Humans , Kruppel-Like Transcription Factors/metabolism , Phylogeny , Sequence Alignment , Species Specificity
17.
Development ; 144(24): 4496-4509, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29254992

ABSTRACT

Pluripotent stem cells have broad utility in biomedical research and their molecular regulation has thus garnered substantial interest. While the principles that establish and regulate pluripotency have been well defined in the mouse, it has been difficult to extrapolate these insights to the human system due to species-specific differences and the distinct developmental identities of mouse versus human embryonic stem cells. In this Review, we examine genome-wide approaches to elucidate the regulatory principles of pluripotency in human embryos and stem cells, and highlight where differences exist in the regulation of pluripotency in mice and humans. We review recent insights into the nature of human pluripotent cells in vivo, obtained by the deep sequencing of pre-implantation embryos. We also present an integrated overview of the principal layers of global gene regulation in human pluripotent stem cells. Finally, we discuss the transcriptional and epigenomic remodeling events associated with cell fate transitions into and out of human pluripotency.


Subject(s)
Cellular Reprogramming/genetics , Embryonic Development/physiology , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental/genetics , Pluripotent Stem Cells/metabolism , Embryo, Mammalian , Humans
18.
Cell Stem Cell ; 20(1): 87-101, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27989770

ABSTRACT

Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (Xi) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets Xi abnormalities seen in primed hESCs, it may provide cells better suited for downstream applications.


Subject(s)
Chromosomes, Human, X/genetics , Pluripotent Stem Cells/metabolism , X Chromosome Inactivation/genetics , Base Sequence , Blastocyst/cytology , Blastocyst/metabolism , Cell Differentiation/genetics , Cells, Cultured , DNA Methylation/genetics , Female , Histones/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Lysine/metabolism , Methylation , Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
19.
Cell Stem Cell ; 19(4): 502-515, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27424783

ABSTRACT

Recent studies have aimed to convert cultured human pluripotent cells to a naive state, but it remains unclear to what extent the resulting cells recapitulate in vivo naive pluripotency. Here we propose a set of molecular criteria for evaluating the naive human pluripotent state by comparing it to the human embryo. We show that transcription of transposable elements provides a sensitive measure of the concordance between pluripotent stem cells and early human development. We also show that induction of the naive state is accompanied by genome-wide DNA hypomethylation, which is reversible except at imprinted genes, and that the X chromosome status resembles that of the human preimplantation embryo. However, we did not see efficient incorporation of naive human cells into mouse embryos. Overall, the different naive conditions we tested showed varied relationships to human embryonic states based on molecular criteria, providing a backdrop for future analysis of naive human pluripotency.


Subject(s)
Pluripotent Stem Cells/metabolism , Animals , Blastocyst/cytology , Blastocyst/metabolism , Cell Differentiation/genetics , Cell Line , Chimera/metabolism , Chromosomes, Human, X/genetics , Cleavage Stage, Ovum/metabolism , DNA Methylation/genetics , DNA Transposable Elements/genetics , DNA, Mitochondrial/metabolism , Female , Gene Expression Profiling , Genome, Human , Genomic Imprinting , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Male , Mice , Mitochondria/metabolism , Morula/cytology , Morula/metabolism , Pluripotent Stem Cells/cytology , Polymerase Chain Reaction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...