Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 4(2)2019 03 06.
Article in English | MEDLINE | ID: mdl-30842269

ABSTRACT

The ability to generate autonomously replicating plasmids has been elusive in Candida albicans, a prevalent human fungal commensal and pathogen. Instead, plasmids generally integrate into the genome. Here, we assessed plasmid and transformant properties, including plasmid geometry, transformant colony size, four selectable markers, and potential origins of replication, for their ability to drive autonomous plasmid maintenance. Importantly, linear plasmids with terminal telomere repeats yielded many more autonomous transformants than circular plasmids with the identical sequences. Furthermore, we could distinguish (by colony size) transient, autonomously replicating, and chromosomally integrated transformants (tiny, medium, and large, respectively). Candida albicansURA3 and a heterologous marker, ARG4, yielded many transient transformants indicative of weak origin activity; the replication of the plasmid carrying the heterologous LEU2 marker was highly dependent upon the addition of a bona fide origin sequence. Several bona fide chromosomal origins, with an origin fragment of ∼100 bp as well as a heterologous origin, panARS, from Kluyveromyces lactis, drove autonomous replication, yielding moderate transformation efficiency and plasmid stability. Thus, C. albicans maintains linear plasmids that yield high transformation efficiency and are maintained autonomously in an origin-dependent manner.IMPORTANCE Circular plasmids are important tools for molecular manipulation in model fungi such as baker's yeast, yet, in Candida albicans, an important yeast pathogen of humans, prior studies were not able to generate circular plasmids that were autonomous (duplicated without inserting themselves into the chromosome). Here, we found that linearizing circular plasmids with sequences from telomeres, the chromosome ends, allows the plasmids to duplicate and segregate in C. albicans We used this system to identify chromosomal sequences that facilitate the initiation of plasmid replication (origins) and to show that an ∼100-bp fragment of a C. albicans origin and an origin sequence from a distantly related yeast can both function as origins in C. albicans Thus, the requirements for plasmid geometry, but not necessarily for origin sequences, differ between C. albicans and baker's yeast.


Subject(s)
Candida albicans/genetics , Chromosomes, Fungal/genetics , DNA Replication , Plasmids/genetics , Replication Origin , Kluyveromyces/genetics , Telomere/genetics
2.
mBio ; 5(5): e01703-14, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25182328

ABSTRACT

UNLABELLED: Origins of DNA replication are key genetic elements, yet their identification remains elusive in most organisms. In previous work, we found that centromeres contain origins of replication (ORIs) that are determined epigenetically in the pathogenic yeast Candida albicans. In this study, we used origin recognition complex (ORC) binding and nucleosome occupancy patterns in Saccharomyces cerevisiae and Kluyveromyces lactis to train a machine learning algorithm to predict the position of active arm (noncentromeric) origins in the C. albicans genome. The model identified bona fide active origins as determined by the presence of replication intermediates on nondenaturing two-dimensional (2D) gels. Importantly, these origins function at their native chromosomal loci and also as autonomously replicating sequences (ARSs) on a linear plasmid. A "mini-ARS screen" identified at least one and often two ARS regions of ≥100 bp within each bona fide origin. Furthermore, a 15-bp AC-rich consensus motif was associated with the predicted origins and conferred autonomous replicating activity to the mini-ARSs. Thus, while centromeres and the origins associated with them are epigenetic, arm origins are dependent upon critical DNA features, such as a binding site for ORC and a propensity for nucleosome exclusion. IMPORTANCE: DNA replication machinery is highly conserved, yet the definition of exactly what specifies a replication origin differs in different species. Here, we utilized computational genomics to predict origin locations in Candida albicans by combining locations of binding sites for the conserved origin replication complex, necessary for replication initiation, together with chromatin organization patterns. We identified predicted sequences that exhibited bona fide origin function and developed a linear plasmid assay to delimit the DNA fragments necessary for origin function. Additionally, we found that a short AC-rich motif, which is enriched in predicted origins, is required for origin function. Thus, we demonstrated a new machine learning paradigm for identification of potential origins from a genome with no prior information. Furthermore, this work suggests that C. albicans has two different types of origins: "hard-wired" arm origins that rely upon specific sequence motifs and "epigenetic" centromeric origins that are recruited to kinetochores in a sequence-independent manner.


Subject(s)
Candida albicans/genetics , Centromere/genetics , Epigenesis, Genetic , Genome, Fungal , Nucleosomes/genetics , Replication Origin/genetics , Amino Acid Sequence , Binding Sites , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism , DNA Replication , DNA, Fungal/genetics , Kluyveromyces/genetics , Logistic Models , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Origin Recognition Complex/genetics , Plasmids/genetics , Saccharomyces cerevisiae/genetics
3.
CNS Neurol Disord Drug Targets ; 9(6): 791-800, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20942784

ABSTRACT

Huntington's disease (HD) is an adult onset neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. Recent work has shown that perturbation of kynurenine pathway (KP) metabolism is a hallmark of HD pathology, and that changes in brain levels of KP metabolites may play a causative role in this disease. The KP contains three neuroactive metabolites, the neurotoxins 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN), and the neuroprotectant kynurenic acid (KYNA). In model systems in vitro and in vivo, 3-HK and QUIN have been shown to cause neurodegeneration via a combination of excitotoxic mechanisms and oxidative stress. Recent studies with HD patient samples and in HD model systems have supported the idea that a shift away from the synthesis of KYNA and towards the formation of 3-HK and QUIN may trigger the neuropathological features observed in HD. The enzyme kynurenine 3-monooxygenase (KMO) is located at a critical branching point in the KP such that inhibition of this enzyme by either pharmacological or genetic means shifts the flux in the pathway towards the formation of KYNA. This intervention ameliorates disease-relevant phenotypes in HD models. Here we review the work implicating the KP in HD pathology and discuss the potential of KMO as a therapeutic target for this disorder. As several neurodegenerative diseases exhibit alterations in KP metabolism, this concept has broader implications for the treatment of brain diseases.


Subject(s)
Drug Delivery Systems/methods , Huntington Disease/metabolism , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Animals , Disease Models, Animal , Humans , Huntington Disease/drug therapy , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/metabolism , Models, Neurological , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...