Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(5): 058401, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37595221

ABSTRACT

Understanding the phase behavior of mixtures with many components is important in many contexts, including as a key step toward a physics-based description of intracellular compartmentalization. Here, we study phase ordering instabilities in a paradigmatic model that represents the complexity of-e.g., biological-mixtures via random second virial coefficients. Using tools from free probability theory we obtain the exact spinodal curve and the nature of instabilities for a mixture with an arbitrary composition, thus lifting an important restriction in previous work. We show that, by controlling the concentration of only a few components, one can systematically change the nature of the spinodal instability and achieve demixing for realistic scenarios by a strong composition imbalance amplification. This results from a nontrivial interplay of interaction complexity and entropic effects due to the nonuniform composition. Our approach can be extended to include additional systematic interactions, leading to a competition between different forms of demixing as density is varied.

2.
J Chem Phys ; 158(21)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37272577

ABSTRACT

Extending the famous model B for the time evolution of a liquid mixture, we derive an approximate expression for the mobility matrix that couples different mixture components. This approach is based on a single component fluid with particles that are artificially grouped into separate species labeled by "colors." The resulting mobility matrix depends on a single dimensionless parameter, which can be determined efficiently from experimental data or numerical simulations, and includes existing standard forms as special cases. We identify two distinct mobility regimes, corresponding to collective motion and interdiffusion, respectively, and show how they emerge from the microscopic properties of the fluid. As a test scenario, we study the dynamics after a thermal quench, providing a number of general relations and analytical insights from a Gaussian theory. Specifically, for systems with two or three components, analytical results for the time evolution of the equal time correlation function compare well to results of Monte Carlo simulations of a lattice gas. A rich behavior is observed, including the possibility of transient fractionation.

3.
Phys Rev E ; 101(6-1): 062138, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688552

ABSTRACT

We study lattice gas systems on the honeycomb lattice where particles exclude neighboring sites up to order k (k=1,...,5) from being occupied by another particle. Monte Carlo simulations were used to obtain phase diagrams and characterize phase transitions as the system orders at high packing fractions. For systems with first-neighbors exclusion (1NN), we confirm previous results suggesting a continuous transition in the two-dimensional Ising universality class. Exclusion up to second neighbors (2NN) lead the system to a two-step melting process where, first, a high-density columnar phase undergoes a first-order phase transition with nonstandard scaling to a solidlike phase with short-range ordered domains and, then, to fluidlike configurations with no sign of a second phase transition. 3NN exclusion, surprisingly, shows no phase transition to an ordered phase as density is increased, staying disordered even to packing fractions up to 0.98. The 4NN model undergoes a continuous phase transition with critical exponents close to the three-state Potts model. The 5NN system undergoes two first-order phase transitions, both with nonstandard scaling. We, also, propose a conjecture concerning the possibility of more than one phase transition for systems with exclusion regions further than 5NN based on geometrical aspects of symmetries.

SELECTION OF CITATIONS
SEARCH DETAIL
...