Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Xenobiotica ; 31(8-9): 677-86, 2001.
Article in English | MEDLINE | ID: mdl-11569533

ABSTRACT

1. In vitro studies with the selective dopamine D3 receptor antagonist SB-277011 were conducted in liver microsomes and homogenates from rat, dog, cynomolgus monkey and human to correlate the rate of metabolism with the in vivo pharmacokinetics of the compound in rat, dog and cynomolgus monkey. 2. In the presence of NADPH, SB-277011 was relatively stable in the presence of liver microsomes from rat, dog, cynomolgus monkey and human with an intrinsic clearance (CLi) of < 2 ml min(-1) g(-1) liver for all species. In total liver homogenates, SB-277011 was metabolized at a similar rate in rat and dog (CLi < 2 ml min(-1) g(-1) liver) to that in liver microsomes but in cynomolgus monkey and human (CLi = 9.9 and 45 ml min(-1) g(-1) liver, respectively) the intrinsic clearance was approximately 6- and 35-fold higher, respectively, than that in liver microsomes. 3. In the absence of NADPH, SR-277011 was rapidly cleared in liver homogenates from cynomolgus monkey and human (CLi = 7.4 and 27 ml min(-1) g(-1) liver, respectively) demonstrating that a significant pathway of metabolism of this compound was via an NADPH-independent non-microsomal oxidative route. This pathway was sensitive to inhibition with isovanillin suggesting that the enzyme responsible was aldehyde oxidase. 4. The in vivo pharmacokinetics showed that the plasma clearance of SB-277011 was low in rat (20 ml min(-1) kg(-1)), moderate in dog (14 ml min(-1) kg(-1)) and high in cynomolgus monkey (58 ml min(-1)kg(-1)), which is consistent with the in vitro findings and demonstrated a greater capacity for the monkey to metabolize this compound. The oral bioavailability of SB-277011 in rat, dog and cynomolgus monkey was 35, 43 and 2%, respectively. Given the high clearance of this compound in cynomolgus monkey, the low oral bioavailability is probably as a result of high first-pass elimination, specifically by aldehyde oxidase, rather than poor absorption. 5. The high in vitro clearance of SB-277011 in human liver homogenates and the involvement of aldehyde oxidase in the metabolism of SB-277011 indicates that the bioavailability of the compound is likely to be low in human.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Dopamine Antagonists/pharmacokinetics , Dopamine D2 Receptor Antagonists , Nitriles/pharmacokinetics , Quinolines/pharmacokinetics , Tetrahydroisoquinolines , Aldehyde Oxidase , Animals , Biological Availability , Dogs , Dopamine Antagonists/metabolism , Female , Humans , In Vitro Techniques , Liver/metabolism , Macaca fascicularis , Male , Microsomes, Liver/metabolism , NADP/metabolism , Nitriles/metabolism , Quinolines/metabolism , Rats , Receptors, Dopamine D3 , Species Specificity
2.
Bioorg Med Chem Lett ; 11(5): 685-8, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11266169

ABSTRACT

Starting from the tetrahydroisoquinoline SB-277011 1, a novel series of 5-substituted-2,3-dihydro-1H-isoindoles has been designed. Subsequent optimisation resulted in identification of 19, which has high affinity for the dopamine D3 receptor (pKi 8.3) and > or = 100-fold selectivity over other aminergic receptors. In rat studies 19 was brain penetrant with an excellent pharmacokinetic profile (oral bioavailability 77%, t1/2 5.2h).


Subject(s)
Dopamine Antagonists/chemistry , Dopamine Antagonists/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptors, Dopamine D2/metabolism , Animals , Brain/metabolism , CHO Cells , Cricetinae , Dopamine Antagonists/chemical synthesis , Dopamine Antagonists/metabolism , Drug Design , Humans , Indoles/chemical synthesis , Indoles/metabolism , Models, Molecular , Molecular Structure , Radioligand Assay , Rats , Receptors, Dopamine D3
3.
Bioorg Med Chem Lett ; 10(22): 2553-5, 2000 Nov 20.
Article in English | MEDLINE | ID: mdl-11086728

ABSTRACT

Starting from the dopamine D3 receptor antagonist SB-277011 1, a series of 2,3,4,5-tetrahydro-1H-3-benzazepines has been identified with high affinity for the dopamine D3 receptor and selectivity over the D2 receptor. The 3-acetamido-2-fluorocinnamide derivative 20 gave high D3 receptor affinity (pKi 8.4) with 130-fold selectivity over the 2, receptor.


Subject(s)
Nitriles/pharmacology , Quinolines/pharmacology , Receptors, Dopamine D2/drug effects , Tetrahydroisoquinolines , Animals , Nitriles/chemistry , Quinolines/chemistry , Rats , Receptors, Dopamine D3
4.
J Pharmacol Exp Ther ; 294(3): 1154-65, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10945872

ABSTRACT

SB-277011-A (trans-N-[4-[2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolininecarboxamide), is a brain-penetrant, high-affinity, and selective dopamine D(3) receptor antagonist. Radioligand-binding experiments in Chinese hamster ovary (CHO) cells transfected with human dopamine D(3) or D(2 long) (hD(3), hD(2)) receptors showed SB-277011-A to have high affinity for the hD(3) receptor (pK(i) = 7.95) with 100-fold selectivity over the hD(2) receptor and over 66 other receptors, enzymes, and ion channels. Similar radioligand-binding data for SB-277011-A were obtained from CHO cells transfected with rat dopamine D(3) or D(2). In the microphysiometer functional assay, SB-277011-A antagonized quinpirole-induced increases in acidification in CHO cells overexpressing the hD(3) receptor (pK(b) = 8.3) and was 80-fold selective over hD(2) receptors. Central nervous system penetration studies showed that SB-277011-A readily entered the brain. In in vivo microdialysis studies, SB-277011-A (2. 8 mg/kg p.o.) reversed the quinelorane-induced reduction of dopamine efflux in the nucleus accumbens but not striatum, a regional selectivity consistent with the distribution of the dopamine D(3) receptor in rat brain. SB-277011-A (2-42.3 mg/kg p.o.) did not affect spontaneous locomotion, or stimulant-induced hyperlocomotion. SB-277011-A (4.1-42.2 mg/kg p.o.) did not reverse prepulse inhibition deficits in apomorphine- or quinpirole-treated rats, but did significantly reverse the prepulse inhibition deficit in isolation-reared rats at a dose of 3 mg/kg p.o. SB-277011-A (2.5-78. 8 mg/kg p.o.) was noncataleptogenic and did not raise plasma prolactin levels. Thus, dopamine D(3) receptor blockade produces few of the behavioral effects characteristic of nonselective dopamine receptor antagonists. The effect of SB-277011-A on isolation-induced prepulse inhibition deficit suggests that blockade of dopamine D(3) receptors may benefit the treatment of schizophrenia.


Subject(s)
Dopamine Antagonists/pharmacology , Nitriles/pharmacology , Quinolines/pharmacology , Receptors, Dopamine D2/drug effects , Tetrahydroisoquinolines , Animals , Brain/metabolism , CHO Cells , Catalepsy/chemically induced , Cricetinae , Dopamine Antagonists/metabolism , Dopamine Antagonists/toxicity , Humans , Male , Microdialysis , Motor Activity/drug effects , Nitriles/metabolism , Nitriles/toxicity , Prolactin/blood , Quinolines/metabolism , Quinolines/toxicity , Radioligand Assay , Rats , Rats, Inbred Strains , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3 , Reflex, Startle/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Transfection
5.
J Med Chem ; 43(9): 1878-85, 2000 May 04.
Article in English | MEDLINE | ID: mdl-10794704

ABSTRACT

A selective dopamine D(3) receptor antagonist offers the potential for an effective antipsychotic therapy, free of the serious side effects of currently available drugs. Using clearance and brain penetration studies as a screen, a series of 1,2,3, 4-tetrahydroisoquinolines, exemplified by 13, was identified with high D(3) affinity and selectivity against the D(2) receptor. Following examination of molecular models, the flexible butyl linker present in 13 was replaced by a more conformationally constrained cyclohexylethyl linker, leading to compounds with improved oral bioavailability and selectivity over other receptors. Subsequent optimization of this new series to improve the cytochrome P450 inhibitory profile and CNS penetration gave trans-N-[4-[2-(6-cyano-1, 2,3, 4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarbo xamide (24, SB-277011). This compound is a potent and selective dopamine D(3) receptor antagonist with high oral bioavailability and brain penetration in the rat and represents an excellent new chemical tool for the investigation of the role of the dopamine D(3) receptor in the CNS.


Subject(s)
Central Nervous System/metabolism , Dopamine Antagonists/chemical synthesis , Nitriles/chemical synthesis , Quinolines/chemical synthesis , Receptors, Dopamine D2/drug effects , Tetrahydroisoquinolines , Animals , Biological Availability , Brain/drug effects , Brain/metabolism , CHO Cells , Catalepsy/chemically induced , Catalepsy/psychology , Central Nervous System/drug effects , Cricetinae , Dopamine Antagonists/pharmacokinetics , Dopamine Antagonists/pharmacology , Half-Life , Humans , Male , Microdialysis , Nitriles/pharmacokinetics , Nitriles/pharmacology , Prolactin/blood , Quinolines/pharmacokinetics , Quinolines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D3
6.
Bioorg Med Chem Lett ; 9(2): 179-84, 1999 Jan 18.
Article in English | MEDLINE | ID: mdl-10021923

ABSTRACT

Using clearance and brain penetration studies as a screen, tetrahydroisoquinoline 3 was identified as a lead having low clearance in rats (CLb 20 ml/min/kg). Introduction of a 7-CF3SO2O- substituent into the tetrahydroisoquinoline, followed by replacement of the biphenylamido group of 3 by a 3-indolylpropenamido group gave 31, having high D3 receptor affinity (pKi 8.4) and 150 fold selectivity over the D2 receptor.


Subject(s)
Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Receptors, Dopamine D2/chemistry , Animals , Brain/drug effects , Isoquinolines/administration & dosage , Isoquinolines/blood , Models, Molecular , Rats , Receptors, Dopamine D3
7.
Bioorg Med Chem ; 7(12): 2767-73, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10658582

ABSTRACT

A model series of 5-HT2C antagonists have been prepared by rapid parallel synthesis. These N-substituted phenyl-N'-pyridin-3-yl ureas were found to have a range of 5-HT2C receptor affinities and selectivities over the closely related 5-HT2A receptor. Extrapolation of simple SAR, derived from this set of compounds, to the more active but synthetically more complex 1-(3-pyridylcarbamoyl)indoline series allowed us to target optimal substitution patterns and identify potent and selective 5-HT(2C/2B) antagonists.


Subject(s)
Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Receptors, Serotonin/drug effects , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Animals , Humans , In Vitro Techniques , Kinetics , Magnetic Resonance Spectroscopy , Models, Chemical , Phenylurea Compounds/chemical synthesis , Pyridines/chemical synthesis , Receptor, Serotonin, 5-HT2B , Receptor, Serotonin, 5-HT2C , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemical synthesis , Structure-Activity Relationship
8.
J Med Chem ; 41(10): 1598-612, 1998 May 07.
Article in English | MEDLINE | ID: mdl-9572885

ABSTRACT

The synthesis, biological activity, and molecular modeling of a novel series of substituted 1-(3-pyridylcarbamoyl)indolines are reported. These compounds are isosteres of the previously published indole urea 1 (SB-206553) and illustrate the use of aromatic disubstitution as a replacement for fused five-membered rings in the context of 5-HT2C/2B receptor antagonists. By targeting a region of space previously identified as sterically allowed at the 5-HT2C receptor but disallowed at the 5-HT2A receptor, we have identified a number of compounds which are the most potent and selective 5-HT2C/2B receptor antagonists yet reported. 46 (SB-221284) was selected on the basis of its overall biological profile for further evaluation as a novel, potential nonsedating anxiolytic agent. A CoMFA analysis of these compounds produced a model with good predictive value and in addition good qualitative agreement with both our 5-HT2C receptor model and our proposed binding mode for this class of ligands within that model.


Subject(s)
Anti-Anxiety Agents , Indoles , Models, Molecular , Pyridines , Receptors, Serotonin/drug effects , Serotonin Antagonists , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Conditioning, Operant/drug effects , Conflict, Psychological , Indoles/chemical synthesis , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Male , Motor Activity/drug effects , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2B , Receptor, Serotonin, 5-HT2C , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/chemistry , Serotonin Antagonists/metabolism , Serotonin Antagonists/pharmacology , Social Behavior , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 8(20): 2859-64, 1998 Oct 20.
Article in English | MEDLINE | ID: mdl-9873637

ABSTRACT

Starting from a series of 2-aminotetralins 1, a novel series of N-[4-(4-phenylbenzoylamino)butyl]-octahydrobenzoquinolines and hexahydrobenzoindoles with high potency and selectivity for the dopamine D3 receptor has been designed. The effect of ligand chirality on binding affinity has been established. Selected derivatives (e.g. 2o, 2p) show high functional selectivity and enhanced in vivo properties compared to 1.


Subject(s)
Dopamine D2 Receptor Antagonists , Tetrahydronaphthalenes/chemistry , Animals , Metabolic Clearance Rate , Rats , Receptors, Dopamine D3 , Tetrahydronaphthalenes/pharmacokinetics , Tetrahydronaphthalenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...