Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 69(1): 42-52, 2022 01.
Article in English | MEDLINE | ID: mdl-34097602

ABSTRACT

Quantitative assessment of myocardial stiffness is crucial to understand and evaluate cardiac biomechanics and function. Despite the recent progresses of ultrasonic shear wave elastography, quantitative evaluation of myocardial stiffness still remains a challenge because of strong elastic anisotropy. In this paper we introduce a smart ultrasound approach for non-invasive real-time quantification of shear wave velocity (SWV) and elastic fractional anisotropy (FA) in locally transverse isotropic elastic medium such as the myocardium. The approach relies on a simultaneous multidirectional evaluation of the SWV without a prior knowledge of the fiber orientation. We demonstrated that it can quantify accurately SWV in the range of 1.5 to 6 m/s in transverse isotropic medium (FA < 0.7) using numerical simulations. Experimental validation was performed on calibrated phantoms and anisotropic ex vivo tissues. A mean absolute error of 0.22 m/s was found when compared to gold standard measurements. Finally, in vivo feasibility of myocardial anisotropic stiffness assessment was evaluated in four healthy volunteers on the antero-septo basal segment and on anterior free wall of the right ventricle (RV) in end-diastole. A mean longitudinal SWV of 1.08 ± 0.20 m/s was measured on the RV wall and 1.74 ± 0.51 m/s on the septal wall with a good intra-volunteer reproducibility (±0.18 m/s). This approach has the potential to become a clinical tool for the quantitative evaluation of myocardial stiffness and diastolic function.


Subject(s)
Elasticity Imaging Techniques , Heart/diagnostic imaging , Humans , Myocardium , Reproducibility of Results , Ultrasonography
2.
Phys Med Biol ; 57(4): 1095-112, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22297208

ABSTRACT

Electromechanical Wave Imaging (EWI) is a non-invasive, ultrasound-based imaging method capable of mapping the electromechanical wave (EW) in vivo, i.e. the transient deformations occurring in response to the electrical activation of the heart. Optimal imaging frame rates, in terms of the elastographic signal-to-noise ratio, to capture the EW cannot be achieved due to the limitations of conventional imaging sequences, in which the frame rate is low and tied to the imaging parameters. To achieve higher frame rates, EWI is typically performed by combining sectors acquired during separate heartbeats, which are then combined into a single view. However, the frame rates achieved remain potentially sub-optimal and this approach precludes the study of non-periodic arrhythmias. This paper describes a temporally unequispaced acquisition sequence (TUAS) for which a wide range of frame rates are achievable independently of the imaging parameters, while maintaining a full view of the heart at high beam density. TUAS is first used to determine the optimal frame rate for EWI in a paced canine heart in vivo and then to image during ventricular fibrillation. These results indicate how EWI can be optimally performed within a single heartbeat, during free breathing and in real time, for both periodic and non-periodic cardiac events.


Subject(s)
Heart/physiology , Mechanical Phenomena , Molecular Imaging/methods , Stress, Mechanical , Animals , Arrhythmias, Cardiac/physiopathology , Dogs , Heart/physiopathology , Male , Probability , Time Factors , Ventricular Fibrillation/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...