Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35406974

ABSTRACT

The aerial parts of Anthemis tinctoria L. and Angelica sylvestris L. and the roots of A. sylvestris have been used as traditional anticancer remedies in Estonian ethnomedicine. The aim of this study was to investigate content of essential oils (by gas chromatography) and polyphenolic compounds (using two different methods of high performance liquid chromatography-mass spectrometry (HPLC-MS)) of both plant species, as well as the in vitro anti-cancer effects of their essential oils and methanolic extracts. The average (n = 5 samples) yield of essential oils was 0.15%, 0.13%, and 0.17%, respectively. The principal compounds of the essential oil from the aerial parts of A. tinctoria were palmitic acid (15.3%), p-cymene (12.6%), and α-muurolene (12.5%), and α-pinene (45.4%), p-cymene (15.5%), and ß-myrcene (13.3%) in aerial parts of A. sylvestris, while isocaryophyllene oxide (31.9%), α-bisabolol (17.5%), and α-pinene (12.4%) were the main constituents in the roots. The most abundant phenolic compounds in aerial parts were the derivatives of caffeic acid, quinic acid, and quercetin; the main compounds in roots of A. sylvestris were chlorogenic acid, quinic acid, and naringenin. The strongest anticancer effects were observed in essential oils of A. sylvestris roots and aerial parts on human carcinoma in the mouth cells (KB, IC50 19.73 µg/mL and 19.84 µg/mL, respectively). The essential oil of A. tinctoria showed a strong effect on KB and LNCaP cells (27.75-29.96 µg/mL). The methanolic extracts of both plants had no effect on the cancer cells studied.

2.
Antibiotics (Basel) ; 9(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570731

ABSTRACT

The rapid emergence of drug-resistant strains and novel viruses have motivated the search for new anti-infectious agents. In this study, the chemical compositions and cytotoxicity, as well as the antibacterial, antifungal, antitrichomonas, and antiviral activities of essential oils from the leaves, rhizomes, and whole plant of Hornstedtia bella were investigated. The GC/MS analysis showed that ß-pinene, E-ß-caryophyllene, and α-humulene were found at high concentrations in the essential oils. The essential oils exhibited (i) inhibition against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis with minimum inhibitory concentrations (MIC) and minimum lethal concentration (MLC) values from 1 to 4% (v/v); (ii) MIC and MLC values from 2 to 16% (v/v) in Candida tropicalis and Candida parapsilosis; (iii) MIC and MLC values from 4 to 16% in Enterococcus faecalis; and (iv) MIC and MLC values from 8 to greater than or equal to 16% (v/v) in the remaining strains, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Candida albicans, and Candida glabrata. In antitrichomonas activity, the leaves and whole-plant oils of Hornstedtia bella possessed IC50, IC90, and MLC values of 0.008%, 0.016%, and 0.03% (v/v), respectively, whilst those of rhizomes oil had in turn, 0.004%, 0.008%, and 0.016% (v/v).Besides, the leaf oil showed a weak cytotoxicity against Vero 76 and MRC-5; meanwhile, rhizomes and whole-plant oils did not exert any toxic effects on cell monolayers. Finally, these oils were not active against EV-A71.

3.
Antibiotics (Basel) ; 9(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344551

ABSTRACT

The present study aimed to determine the bioactivities of essential oils extracted from the leaves of Paramignya trimera and Limnocitrus littoralis, including cytotoxicity, antiviral, antibacterial, antimycotic, and antitrichomonas effects. Herein, it was indicated that P. trimera and L. littoralis oils showed no cytotoxicity on normal cells, namely MT-4, BHK-21, MDBK, and Vero-76. P. trimera oil (i) exhibited the strongest inhibition against Staphylococcus aureus with MIC and MLC values of 2% (v/v); (ii) showed MIC and MLC values of 8% (v/v) in Candida parapsilosis; and (iii) in the remaining strains, showed MIC and MLC values greater than or equal to 16% (v/v). On the other hand, L. littoralis oil (i) displayed the strongest inhibition against Candida tropicalis and Candida parapsilosis with 2% (v/v) of MIC and MLC; and (ii) in the remaining strains, possessed MIC and MLC greater than or equal to 16% (v/v). In addition, antitrichomonas activities of the oils were undertaken, showing IC50, IC90, MLC values, respectively, at 0.016%, 0.03%, and 0.06% (v/v) from P. trimera, and 0.03%, 0.06%, 0.12% (v/v) from L. littoralis, after 48 h of incubation. The oils were completely ineffective against ssRNA+ (HIV-1, YFV, BVDV, Sb-1, CV-B4), ssRNA- (RSV, VSV), dsRNA (Reo-1), and dsDNA (HSV-1, VV) viruses. This is the first report describing the cytotoxicity, antiviral, antibacterial, antimycotic, and antitrichomonas activities of the essential oils of P. trimera and L. littoralis.

4.
Chem Biodivers ; 17(5): e2000037, 2020 May.
Article in English | MEDLINE | ID: mdl-32163220

ABSTRACT

The ocotillol (OCT)-type saponins have been known as a tetracyclic triterpenoid, possessing five- or six-membered epoxy ring in the side chain. Interestingly, this type saponin was mostly found in Panax vietnamensis Ha et Grushv., Araliaceae (VG), hence making VG unique from the other Panax spp. Five OCT-type saponins, majonoside R2, vina-ginsenoside R2, majonoside R1, pseudoginsenoside RT4, vina-ginsenoside R11, together with three protopanaxadiol (PPD)-type saponins and four protopanaxatriol (PPT)-type saponins from VG were evaluated for their antimelanogenic activity. All of isolates were found to be active. More importantly, the five OCT-type saponins inhibited melanin production in B16-F10 mouse melanoma cells, without showing any cytotoxicity. Besides ginsenoside Rd and ginsenoside Rg3 in PPD and notoginsenoside R1 in PPT-type saponins, majonoside R2 was the most potent melanogenesis inhibitory activity in OCT-type saponins. In this article, we highlighted antimelanogenic activity of OCT-type saponins and potential structure-activity relationship (SAR) of ginsenosides. Our results suggested that OCT-type saponins could be used as a depigmentation agent.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Ginsenosides/pharmacology , Melanoma/drug therapy , Panax/chemistry , Saponins/pharmacology , Animals , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ginsenosides/chemistry , Ginsenosides/isolation & purification , Melanins/antagonists & inhibitors , Melanins/metabolism , Melanoma/metabolism , Melanoma/pathology , Mice , Molecular Conformation , Plants, Medicinal , Saponins/chemistry , Saponins/isolation & purification , Structure-Activity Relationship , Tumor Cells, Cultured
5.
Pharmaceutics ; 11(10)2019 Sep 29.
Article in English | MEDLINE | ID: mdl-31569535

ABSTRACT

Haemanthamine (HAE) has been proven as a potential anticancer agent. However, the therapeutic use of this plant-origin alkaloid to date is limited due to the chemical instability and poorly water-soluble characteristics of the agent. To overcome these challenges, we developed novel amphiphilic electrospun nanofibers (NFs) loaded with HAE, phosphatidylcholine (PC) and polyvinylpyrrolidone (PVP), and intended for a stabilizing platform (template) of self-assembled liposomes of the active agent. The NFs were fabricated with a solvent-based electrospinning method. The chemical structure of HAE and the geometric properties, molecular interactions and physical solid-state properties of the NFs were investigated using nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM), photon correlation spectroscopy (PCS), Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC), respectively. An in-house dialysis-based dissolution method was used to investigate the drug release in vitro. The HAE-loaded fibers showed a nanoscale size ranging from 197 nm to 534 nm. The liposomes with a diameter between 63 nm and 401 nm were spontaneously formed as the NFs were exposed to water. HAE dispersed inside liposomes showed a tri-modal dissolution behavior. In conclusion, the present amphiphilic NFs loaded with HAE are an alternative approach for the formulation of a liposomal drug delivery system and stabilization of the liposomes of the present alkaloid.

6.
J Asian Nat Prod Res ; 20(2): 188-194, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28657349

ABSTRACT

The aim of the research was to study the active constituents of Anodendron paniculatum Roxb. (Apocynaceae). A new triterpene ester, named anopaniester (1), and cycloartenol (2), ursolic acid (3), esculenic acid (4), bis-(2-ethylhexyl) phthalate (5), desmosterol (6), stigmasterol (7), vaniline (8), and (E)-phytol (9), were isolated from the aerial parts of A. paniculatum. Compounds 3 and 6 showed the significant inhibitory effect (IC50 values ranging from 30.89 ± 3.60 to 44.37 ± 5.40 µg/ml) against tested human cancer cell lines LU-1 and MKN-7. The compounds 1-4, and 6 were isolated from this genus Anodendron for the first time.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Apocynaceae/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Molecular Structure , Plant Components, Aerial/chemistry , Triterpenes/chemistry , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...