Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
3.
PLoS Pathog ; 10(12): e1004526, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25502180

ABSTRACT

Many immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While extensive polymorphism has been reported for the granzyme B (GzmB) gene, its relevance to pathogen immunity is unexplored. Here, we describe the biochemical and cytotoxic functions of a common allele of GzmB (GzmBW) common in wild mouse. While retaining 'Asp-ase' activity, GzmBW has substrate preferences that differ considerably from GzmBP, which is common to all inbred strains. In vitro, GzmBW preferentially cleaves recombinant Bid, whereas GzmBP activates pro-caspases directly. Recombinant GzmBW and GzmBP induced equivalent apoptosis of uninfected targets cells when delivered with perforin in vitro. Nonetheless, mice homozygous for GzmBW were unable to control murine cytomegalovirus (MCMV) infection, and succumbed as a result of excessive liver damage. Although similar numbers of anti-viral CD8 T cells were generated in both mouse strains, GzmBW-expressing CD8 T cells isolated from infected mice were unable to kill MCMV-infected targets in vitro. Our results suggest that known virally-encoded inhibitors of the intrinsic (mitochondrial) apoptotic pathway account for the increased susceptibility of GzmBW mice to MCMV. We conclude that different natural variants of GzmB have a profound impact on the immune response to a common and authentic viral pathogen.


Subject(s)
Genetic Variation/genetics , Granzymes/genetics , Herpesviridae Infections/immunology , Herpesviridae Infections/mortality , Muromegalovirus/immunology , Virus Diseases/immunology , Virus Diseases/mortality , Alleles , Amino Acid Sequence , Animals , Apoptosis , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Caspases/metabolism , Disease Models, Animal , Granzymes/analysis , Granzymes/deficiency , Herpesviridae Infections/pathology , Immunity, Innate/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Virus Diseases/pathology
4.
Oncoimmunology ; 2(4): e24185, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23734337

ABSTRACT

Loss-of-function mutations in the gene coding for perforin (PRF1) markedly reduce the ability of cytotoxic T lymphocytes and natural killer cells to kill target cells, causing immunosuppression and impairing immune regulation. In humans, nearly half of the cases of type 2 familial hemophagocytic lymphohistiocytosis are due to bi-allelic PRF1 mutations. The partial inactivation of PRF1 due to mutations that promote protein misfolding or the common hypomorphic allele coding for the A91V substitution have been associated with lymphoid malignancies in childhood and adolescence. To investigate whether PRF1 mutations also predispose adults to cancer, we genotyped 566 individuals diagnosed with melanoma (101), lymphoma (65), colorectal carcinoma (30) or ovarian cancer (370). The frequency of PRF1 genotypes was similar in all disease groups and 424 matched controls, indicating that the PRF1 status is not associated with an increased susceptibility to these malignancies. However, four out of 15 additional individuals diagnosed with melanoma and B-cell lymphoma during their lifetime expressed either PRF1A91V or the rare pathogenic PRF1R28C variant (p = 0.04), and developed melanoma relatively early in life. Both PRF1A91V- and PRF1R28C-expressing lymphocytes exhibited severely impaired but measurable cytotoxic function. Our results suggest that defects in human PRF1 predispose individuals to develop both melanoma and lymphoma. However, these findings require validation in larger patient cohorts.

5.
J Immunol ; 188(8): 3886-92, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22427643

ABSTRACT

Recently, it has been reported that human B cells express and secrete the cytotoxic protease granzyme B (GrB) after stimulation with IL-21 and BCR cross-linking. To date, there are few clues on the function of GrB in B cell biology. As experimental transgenic murine systems should provide insights into these issues, we assayed for GrB in C57BL/6 B cells using an extensive array of physiologically relevant stimuli but were unable to detect either GrB expression or its proteolytic activity, even when Ag-specific transgenic BCRs were engaged. Similar results were also obtained with B cells from DBA/2, CBA, or BALB/c mice. In vivo, infection with either influenza virus or murine γ-herpesvirus induced the expected expression of GrB in CTLs, but not in B cell populations. We also investigated a possible role of GrB on the humoral immune response to the model Ag 4-hydroxy-3-nitrophenylacetyl-keyhole limpet hemocyanin, but GrB-deficient mice produced normal amounts of Ab with typical affinity maturation and a heightened secondary response, demonstrating conclusively the redundancy of GrB for Ab responses. Our results highlight the complex evolutionary differences that have shaped the immune systems of mice and humans. The physiological consequences of GrB expression in human B cells remain unclear, and the current study suggests that experimental mouse models will not be helpful in addressing this issue.


Subject(s)
B-Lymphocytes/immunology , Granzymes/metabolism , Herpesviridae Infections/immunology , Orthomyxoviridae Infections/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Cells, Cultured , Gammaherpesvirinae , Granzymes/immunology , Haptens , Hemocyanins/pharmacology , Herpesviridae Infections/enzymology , Humans , Immunity, Humoral , Interleukins/pharmacology , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Orthomyxoviridae , Orthomyxoviridae Infections/enzymology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/metabolism , Species Specificity , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/virology
6.
Tissue Antigens ; 70(3): 198-204, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17661907

ABSTRACT

Granzyme B is a 247 amino acid pro-apoptotic protease secreted by effector lymphocytes for the purpose of killing virus-infected cells. While the capacity of granzyme B to potently induce caspase-dependent apoptosis has long been recognized, it has only recently been found that human and mouse granzyme B activate overlapping but distinct apoptotic pathways. To investigate a possible evolutionary basis for this observation, we sequenced the exons and flanking intronic sequences of the mouse Gzmb gene from a variety of inbred laboratory strains and wild mice. The sequences of 12/13 inbred strains encoded identical proteins, the exception being DBA/2, whose sequence varied at two amino acids. By contrast with the laboratory strains, there was extensive polymorphism in the Gzmb gene of 54 wild mice and 28 wild-derived inbred mice examined, resulting in 2-18 amino acid differences in the predicted proteins, a discrepancy rate of up to 7.3%. Many of these amino acid variations were found in rat and/or human granzyme B. The granzyme B allotype of inbred laboratory strains could be identified in only one of three geographically dispersed clans of wild mice and was absent from all 28 wild-derived inbred strains. The Gzmb gene of Mus musculus castaneus, a close relative of laboratory mice, encoded six amino acid differences compared with the laboratory strains, all of which were also found in corresponding positions in the granzyme B molecules of wild mice. Unlike the protease, the extended granzyme B recognition and cleavage site in Bid, a key pro-apoptotic substrate, was invariant.


Subject(s)
Genetic Variation , Granzymes/genetics , Polymorphism, Single-Stranded Conformational , Amino Acid Sequence , Animals , Mice , Mice, Inbred A , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred DBA , Mice, Inbred NOD , Mice, Inbred NZB , Molecular Sequence Data
7.
J Biol Chem ; 279(17): 16907-11, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-14752093

ABSTRACT

A key function of human granzyme B (GrB) is to induce apoptosis of target cells in conjunction with perforin. The RAH allele is the first documented variant of the human GrB gene, occurs at a frequency of 25-30%, and encodes three amino acid substitutions (Q48R, P88A, and Y245H). It was initially reported that RAH GrB is incapable of inducing apoptosis, but here we show that it has essentially identical proteolytic and cytotoxic properties to wild type GrB. Recombinant RAH and wild type GrB cleave peptide substrates with similar kinetics, are both capable of cleaving Bid and procaspase 3, and are equally inhibited by proteinase inhibitor 9, an endogenous regulator of GrB. Furthermore, cytotoxic lymphocytes from RAH heterozygotes and homozygotes have no defect in target cell killing, and in vitro RAH GrB and wild type GrB kill cells equally well in the presence of perforin. We conclude that the RAH allele represents a neutral polymorphism in the GrB gene.


Subject(s)
Alleles , Apoptosis , Serine Endopeptidases/biosynthesis , Amino Acids , Animals , BH3 Interacting Domain Death Agonist Protein , Carrier Proteins/chemistry , Caspase 3 , Caspases/metabolism , Dose-Response Relationship, Drug , Granzymes , Heterozygote , Homozygote , Humans , K562 Cells , Killer Cells, Lymphokine-Activated/metabolism , Kinetics , Lymphocytes/metabolism , Mice , Pichia/metabolism , Polymorphism, Genetic , Polymorphism, Single-Stranded Conformational , Protease Inhibitors/pharmacology , Recombinant Proteins/chemistry , Serine Endopeptidases/genetics , Time Factors
8.
J Cell Biol ; 160(2): 223-33, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12538642

ABSTRACT

The 280-kD cation-independent mannose-6-phosphate receptor (MPR) has been shown to play a role in endocytic uptake of granzyme B, since target cells overexpressing MPR have an increased sensitivity to granzyme B-mediated apoptosis. On this basis, it has been proposed that cells lacking MPR are poor targets for cytotoxic lymphocytes that mediate allograft rejection or tumor immune surveillance. In the present study, we report that the uptake of granzyme B into target cells is independent of MPR. We used HeLa cells overexpressing a dominant-negative mutated (K44A) form of dynamin and mouse fibroblasts overexpressing or lacking MPR to show that the MPR/clathrin/dynamin pathway is not required for granzyme B uptake. Consistent with this observation, cells lacking the MPR/clathrin pathway remained sensitive to granzyme B. Exposure of K44A-dynamin-overexpressing and wild-type HeLa cells to granzyme B with sublytic perforin resulted in similar apoptosis in the two cell populations, both in short and long term assays. Granzyme B uptake into MPR-overexpressing L cells was more rapid than into MPR-null L cells, but the receptor-deficient cells took up granzyme B through fluid phase micropinocytosis and remained sensitive to it. Contrary to previous findings, we also demonstrated that mouse tumor allografts that lack MPR expression were rejected as rapidly as tumors that overexpress MPR. Entry of granzyme B into target cells and its intracellular trafficking to induce target cell death in the presence of perforin are therefore not critically dependent on MPR or clathrin/dynamin-dependent endocytosis.


Subject(s)
Apoptosis/immunology , Cell Membrane/immunology , Endocytosis/immunology , Killer Cells, Natural/enzymology , Receptor, IGF Type 2/deficiency , Serine Endopeptidases/immunology , T-Lymphocytes, Cytotoxic/enzymology , Animals , Apoptosis/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Clathrin/drug effects , Clathrin/genetics , Clathrin/metabolism , Dynamins/drug effects , Dynamins/genetics , Dynamins/metabolism , Endocytosis/drug effects , Female , Graft Rejection/genetics , Graft Rejection/immunology , Granzymes , HeLa Cells , Humans , Killer Cells, Natural/immunology , Male , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Neoplasms/immunology , Neoplasms/metabolism , Perforin , Pore Forming Cytotoxic Proteins , Receptor, IGF Type 2/drug effects , Receptor, IGF Type 2/genetics , Serine Endopeptidases/deficiency , Serine Endopeptidases/pharmacology , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...