Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(10): 5122-5132, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38382533

ABSTRACT

Palmer amaranth has evolved target and nontarget site resistance to protoporphyrinogen oxidase-inhibitor herbicides in the United States. Recently, a population (KCTR) from a long-term conservation tillage study in Kansas was found to be resistant to herbicides from six sites of action, including to PPO-inhibitors, even with this herbicide group being minimally used in this field. This research investigated the level of resistance to postemergence PPO-inhibitors, target- and nontarget-site resistance mechanism(s), and efficacy of pre-emergence chemistries. The greenhouse experiments confirmed 6.1- to 78.9-fold resistance to lactofen in KCTR, with the level of resistance increasing when KCTR was purified for the resistance trait. PPO2 sequences alignment revealed the absence of known mutations conferring resistance to PPO-inhibitors in KCTR Palmer amaranth, and differential expression of the PPO2 gene did not occur. KCTR metabolized fomesafen faster than the susceptible population, indicating that herbicide detoxification is the mechanism conferring resistance in this population. Further, treatment with the cytochrome P450-inhibitor malathion followed by lactofen restored the sensitivity of KCTR to this herbicide. Despite being resistant to POST applied PPO-inhibitors, KCTR Palmer amaranth was completely controlled by the labeled rate of the PRE applied PPO-inhibitors fomesafen, flumioxazin, saflufenacil, sulfentrazone, and oxadiazon. The overall results suggest that P450-mediated metabolism confers resistance to PPO-inhibitors in KCTR, rather than alterations in the PPO2, which were more commonly found in other Palmer amaranth populations. Future work will focus on identifying the fomesafen metabolites and on unravelling the genetic basis of metabolic resistance to PPO-inhibitor herbicides in KCTR Palmer amaranth.


Subject(s)
Amaranthus , Benzamides , Halogenated Diphenyl Ethers , Herbicides , Herbicides/pharmacology , Kansas , Protoporphyrinogen Oxidase/genetics , Herbicide Resistance/genetics , Amaranthus/metabolism
2.
Physiol Plant ; 175(3): e13917, 2023.
Article in English | MEDLINE | ID: mdl-37087573

ABSTRACT

Mild stresses induce "acquired tolerance traits" (ATTs) that provide tolerance when stress becomes severe. Here, we identified the genetic variability in ATTs among a panel of rice germplasm accessions and demonstrated their relevance in protecting growth and productivity under water-limited conditions. Diverse approaches, including physiological screens, association mapping and metabolomics, were adopted and revealed 43 significant marker-trait associations. Nontargeted metabolomic profiling of contrasting genotypes revealed 26 "tolerance-related-induced" primary and secondary metabolites in the tolerant genotypes (AC-39000 and AC-39020) compared to the susceptible one (BPT-5204) under water-limited condition. Metabolites that help maintain cellular functions, especially Calvin cycle processes, significantly accumulated more in tolerant genotypes, which resulted in superior photosynthetic capacity and hence water use efficiency. Upregulation of the glutathione cycle intermediates explains the ROS homeostasis among the tolerant genotypes, maintaining spikelet fertility, and grain yield under stress. Bioinformatic dissection of a major effect quantitative trait locus on chromosome 8 revealed genes controlling metabolic pathways leading to the production of osmolites and antioxidants, such as GABA and raffinose. The study also led to the identification of specific trait donor genotypes that can be effectively used in translational crop improvement activities.


Subject(s)
Droughts , Oryza , Metabolomics , Oryza/metabolism , Quantitative Trait Loci/genetics , Water/metabolism
3.
J Exp Bot ; 69(8): 2023-2036, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29390146

ABSTRACT

To combat pathogen infection, plants employ local defenses in infected sites and elicit systemic acquired resistance (SAR) in distant tissues. MicroRNAs have been shown to play a significant role in local defense, but their association with SAR is unknown. In addition, no such studies of the interaction between potato and Phytophthora infestans have been reported. We investigated the role of miR160 in local and SAR responses to P. infestans infection in potato. Expression analysis revealed induced levels of miR160 in both local and systemic leaves of infected wild-type plants. miR160 overexpression and knockdown plants exhibited increased susceptibility to infection, suggesting that miR160 levels equivalent to those of wild-type plants may be necessary for mounting local defense responses. Additionally, miR160 knockdown lines failed to elicit SAR, and grafting assays indicated that miR160 is required in both local and systemic leaves to trigger SAR. Consistently, SAR-associated signals and genes were dysregulated in miR160 knockdown lines. Furthermore, analysis of the expression of defense and auxin pathway genes and direct regulation of StGH3.6, a mediator of salicylic acid-auxin cross-talk, by the miR160 target StARF10 revealed the involvement of miR160 in antagonistic cross-talk between salicylic acid-mediated defense and auxin-mediated growth pathways. Overall, our study demonstrates that miR160 plays a crucial role in local defense and SAR responses during the interaction between potato and P. infestans.


Subject(s)
MicroRNAs/immunology , Phytophthora infestans/physiology , Plant Diseases/immunology , RNA, Plant/immunology , Solanum tuberosum/immunology , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Plant Proteins/immunology , RNA, Plant/genetics , Solanum tuberosum/genetics , Solanum tuberosum/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...