Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomol NMR Assign ; 17(2): 199-203, 2023 12.
Article in English | MEDLINE | ID: mdl-37368134

ABSTRACT

Translation initiation in eukaryotes is an early step in protein synthesis, requiring multiple factors to recruit the ribosomal small subunit to the mRNA 5' untranslated region. One such protein factor is the eukaryotic translation initiation factor 4B (eIF4B), which increases the activity of the eIF4A RNA helicase, and is linked to cell survival and proliferation. We report here the protein backbone chemical shift assignments corresponding to the C-terminal 279 residues of human eIF4B. Analysis of the chemical shift values identifies one main helical region in the area previously linked to RNA binding, and confirms that the overall C-terminal region is intrinsically disordered.


Subject(s)
Eukaryotic Initiation Factors , Peptide Initiation Factors , Humans , Nuclear Magnetic Resonance, Biomolecular , Eukaryotic Initiation Factors/chemistry , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Lancet Planet Health ; 4(8): e330-e342, 2020 08.
Article in English | MEDLINE | ID: mdl-32800151

ABSTRACT

BACKGROUND: Schistosomiasis is a neglected tropical disease of global medical and veterinary importance. As efforts to eliminate schistosomiasis as a public health problem and interrupt transmission gather momentum, the potential zoonotic risk posed by livestock Schistosoma species via viable hybridisation in sub-Saharan Africa have been largely overlooked. We aimed to investigate the prevalence, distribution, and multi-host, multiparasite transmission cycle of Haematobium group schistosomiasis in Senegal, West Africa. METHODS: In this epidemiological study, we carried out systematic surveys in definitive hosts (humans, cattle, sheep, and goats) and snail intermediate hosts, in 2016-18, in two areas of Northern Senegal: Richard Toll and Lac de Guiers, where transmission is perennial; and Barkedji and Linguère, where transmission is seasonal. The occurrence and distribution of Schistosoma species and hybrids were assessed by molecular analyses of parasitological specimens obtained from the different hosts. Children in the study villages aged 5-17 years and enrolled in school were selected from school registers. Adults (aged 18-78 years) were self-selecting volunteers. Livestock from the study villages in both areas were also randomly sampled, as were post-mortem samples from local abattoirs. Additionally, five malacological surveys of snail intermediate hosts were carried out at each site in open water sources used by the communities and their animals. FINDINGS: In May to August, 2016, we surveyed 375 children and 20 adults from Richard Toll and Lac de Guiers, and 201 children and 107 adults from Barkedji and Linguère; in October, 2017, to January, 2018, we surveyed 386 children and 88 adults from Richard Toll and Lac de Guiers, and 323 children and 85 adults from Barkedji and Linguère. In Richard Toll and Lac de Guiers the prevalence of urogenital schistosomiasis in children was estimated to be 87% (95% CI 80-95) in 2016 and 88% (82-95) in 2017-18. An estimated 63% (in 2016) and 72% (in 2017-18) of infected children were shedding Schistosoma haematobium-Schistosoma bovis hybrids. In adults in Richard Toll and Lac de Guiers, the prevalence of urogenital schistosomiasis was estimated to be 79% (52-97) in 2016 and 41% (30-54) in 2017-18, with 88% of infected samples containing S haematobium-S bovis hybrids. In Barkedji and Linguère the prevalence of urogenital schistosomiasis in children was estimated to be 30% (23-38) in 2016 and 42% (35-49) in 2017-18, with the proportion of infected children found to be shedding S haematobium-S bovis hybrid miracidia much lower than in Richard Toll and Lac de Guiers (11% in 2016 and 9% in 2017-18). In adults in Barkedji and Linguère, the prevalence of urogenital schistosomiasis was estimated to be 26% (17-36) in 2016 and 47% (34-60) in 2017-18, with 10% of infected samples containing S haematobium-S bovis hybrids. The prevalence of S bovis in the sympatric cattle population of Richard Toll and the Lac de Guiers was 92% (80-99), with S bovis also found in sheep (estimated prevalence 14% [5-31]) and goats (15% [5-33]). In Barkedji and Linguère the main schistosome species in livestock was Schistosoma curassoni, with an estimated prevalence of 73% (48-93) in sheep, 84% (61-98) in goats and 8% (2-24) in cattle. S haematobium-S bovis hybrids were not found in livestock. In Richard Toll and Lac de Guiers 35% of infected Bulinus spp snail intermediate hosts were found to be shedding S haematobium-S bovis hybrids (68% shedding S haematobium; 17% shedding S bovis); however, no snails were found to be shedding S haematobium hybrids in Barkedji and Linguère (29% shedding S haematobium; 71% shedding S curassoni). INTERPRETATION: Our findings suggest that hybrids originate in humans via zoonotic spillover from livestock populations, where schistosomiasis is co-endemic. Introgressive hybridisation, evolving host ranges, and wider ecosystem contexts could affect the transmission dynamics of schistosomiasis and other pathogens, demonstrating the need to consider control measures within a One Health framework. FUNDING: Zoonoses and Emerging Livestock Systems programme (UK Biotechnology and Biological Sciences Research Council, UK Department for International Development, UK Economic and Social Research Council, UK Medical Research Council, UK Natural Environment Research Council, and UK Defence Science and Technology Laboratory).


Subject(s)
Cattle Diseases/epidemiology , Goat Diseases/epidemiology , Schistosoma/physiology , Schistosomiasis/epidemiology , Schistosomiasis/veterinary , Sheep Diseases/epidemiology , Snails/parasitology , Adolescent , Adult , Aged , Animal Distribution , Animals , Cattle , Cattle Diseases/parasitology , Cattle Diseases/transmission , Child , Female , Goat Diseases/parasitology , Goat Diseases/transmission , Goats , Humans , Male , Middle Aged , One Health , Prevalence , Schistosoma haematobium/physiology , Schistosomiasis/parasitology , Schistosomiasis/transmission , Senegal/epidemiology , Sheep , Sheep Diseases/parasitology , Sheep Diseases/transmission , Sheep, Domestic , Young Adult
3.
Proc Natl Acad Sci U S A ; 112(31): 9650-5, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26195752

ABSTRACT

Eliminating human parasitic disease often requires interrupting complex transmission pathways. Even when drugs to treat people are available, disease control can be difficult if the parasite can persist in nonhuman hosts. Here, we show that restoration of a natural predator of a parasite's intermediate hosts may enhance drug-based schistosomiasis control. Our study site was the Senegal River Basin, where villagers suffered a massive outbreak and persistent epidemic after the 1986 completion of the Diama Dam. The dam blocked the annual migration of native river prawns (Macrobrachium vollenhoveni) that are voracious predators of the snail intermediate hosts for schistosomiasis. We tested schistosomiasis control by reintroduced river prawns in a before-after-control-impact field experiment that tracked parasitism in snails and people at two matched villages after prawns were stocked at one village's river access point. The abundance of infected snails was 80% lower at that village, presumably because prawn predation reduced the abundance and average life span of latently infected snails. As expected from a reduction in infected snails, human schistosomiasis prevalence was 18 ± 5% lower and egg burden was 50 ± 8% lower at the prawn-stocking village compared with the control village. In a mathematical model of the system, stocking prawns, coupled with infrequent mass drug treatment, eliminates schistosomiasis from high-transmission sites. We conclude that restoring river prawns could be a novel contribution to controlling, or eliminating, schistosomiasis.


Subject(s)
Biomphalaria/parasitology , Palaemonidae/physiology , Rivers , Schistosomiasis/parasitology , Schistosomiasis/transmission , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Host-Parasite Interactions , Humans , Male , Middle Aged , Models, Biological , Predatory Behavior , Prevalence , Schistosoma/physiology , Schistosomiasis/epidemiology , Young Adult
4.
Trop Med Int Health ; 15(10): 1198-203, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20723184

ABSTRACT

SUMMARY OBJECTIVE: The development of a biomarker of exposure based on the evaluation of the human antibody response specific to Anopheles salivary proteins seems promising in improving malaria control. The IgG response specific to the gSG6-P1 peptide has already been validated as a biomarker of An. gambiae exposure. This study represents a first attempt to validate the gSG6-P1 peptide as an epidemiological tool evaluating exposure to An. funestus bites, the second main malaria vector in sub-Saharan Africa. METHODS: A multi-disciplinary survey was performed in a Senegalese village where An. funestus represents the principal anopheline species. The IgG antibody level specific to gSG6-P1 was evaluated and compared in the same children before, at the peak and after the rainy season. RESULTS: Two-thirds of the children developed a specific IgG response to gSG6-P1 during the study period and--more interestingly--before the rainy season, when An. funestus was the only anopheline species reported. The specific IgG response increased during the An. funestus exposure season, and a positive association between the IgG level and the level of exposure to An. funestus bites was observed. CONCLUSIONS: The results suggest that the evaluation of the IgG response specific to gSG6-P1 in children could also represent a biomarker of exposure to An. funestus bites. The availability of such a biomarker evaluating the exposure to both main Plasmodium falciparum vectors in Africa could be particularly relevant as a direct criterion for the evaluation of the efficacy of vector control strategies.


Subject(s)
Anopheles/immunology , Immunoglobulin G/blood , Insect Bites and Stings/immunology , Insect Proteins/immunology , Salivary Proteins and Peptides/immunology , Animals , Biomarkers/blood , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Insect Bites and Stings/diagnosis , Longitudinal Studies , Male , Senegal
5.
Malar J ; 6: 117, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17764568

ABSTRACT

BACKGROUND: In sub-Saharan areas, malaria transmission was mainly ensured by Anopheles. gambiae s.l. and Anopheles. funestus vectors. The immune response status to Plasmodium falciparum was evaluated in children living in two villages where malaria transmission was ensured by dissimilar species of Anopheles vectors (An. funestus vs An. gambiae s.l.). METHODS: A multi-disciplinary study was performed in villages located in Northern Senegal. Two villages were selected: Mboula village where transmission is strictly ensured by An. gambiae s.l. and Gankette Balla village which is exposed to several Anopheles species but where An. funestus is the only infected vector found. In each village, a cohort of 150 children aged from one to nine years was followed during one year and IgG response directed to schizont extract was determined by ELISA. RESULTS: Similar results of specific IgG responses according to age and P. falciparum infection were observed in both villages. Specific IgG response increased progressively from one-year to 5-year old children and then stayed high in children from five to nine years old. The children with P. falciparum infection had higher specific antibody responses compared to negative infection children, suggesting a strong relationship between production of specific antibodies and malaria transmission, rather than protective immunity. In contrast, higher variation of antibody levels according to malaria transmission periods were found in Mboula compared to Gankette Balla. In Mboula, the peak of malaria transmission was followed by a considerable increase in antibody levels, whereas low and constant anti-malaria IgG response was observed throughout the year in Gankette Balla. CONCLUSION: This study shows that the development of anti-malaria antibody response was profoundly different according to areas where malaria exposure is dependent with different Anopheles species. These results are discussed according to i) the use of immunological tool for the evaluation of malaria transmission and ii) the influence of Anopheles vectors species on the regulation of antibody responses to P. falciparum.


Subject(s)
Anopheles/immunology , Immunoglobulin G/blood , Malaria, Falciparum/immunology , Malaria, Falciparum/transmission , Age Factors , Animals , Antibody Formation , Child , Child, Preschool , Humans , Infant , Insect Vectors/immunology , Seasons , Senegal , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...