Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Mater ; 18(10): 1060-1064, 2019 10.
Article in English | MEDLINE | ID: mdl-31427741

ABSTRACT

The interplay of superconductivity with non-trivial spin textures is promising for the engineering of non-Abelian Majorana quasiparticles. Spin-orbit coupling is crucial for the topological protection of Majorana modes as it forbids other trivial excitations at low energy but is typically intrinsic to the material1-7. Here, we show that coupling to a magnetic texture can induce both a strong spin-orbit coupling of 1.1 meV and a Zeeman effect in a carbon nanotube. Both of these features are revealed through oscillations of superconductivity-induced subgap states under a change in the magnetic texture. Furthermore, we find a robust zero-energy state-the hallmark of devices hosting localized Majorana modes-at zero magnetic field. Our findings are generalizable to any low-dimensional conductor, and future work could include microwave spectroscopy and braiding operations, which are at the heart of modern schemes for topological quantum computation.

2.
Sci Rep ; 7(1): 16835, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203797

ABSTRACT

The Dzyaloshinskii-Moriya interaction has been shown to stabilise Nèel domain walls in magnetic thin films, allowing high domain wall velocities driven by spin current effects. The interfacial Dzyaloshinskii-Moriya interaction (IDMI) occurs at the interface between ferromagnetic and heavy metal layers with strong spin-orbit coupling, but details of the interaction remain to be understood and the role of proximity induced magnetism (PIM) in the heavy metal is unknown. Here IDMI and PIM are reported in Pt determined as a function of Au and Ir spacer layers in Pt/Co/Au,Ir/Pt. Both interactions are found to be sensitive to sub-nanometre changes in the spacer thickness, correlating over sub-monolayer spacer thicknesses, but not for thicker spacers where IDMI continues to change even after PIM is lost.

3.
Nat Commun ; 8: 15765, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28593949

ABSTRACT

Magnetic skyrmions are quasiparticle-like textures which are topologically different from other states. Their discovery in systems with broken inversion symmetry sparked the search for materials containing such magnetic phase at room temperature. Their topological properties combined with the chirality-related spin-orbit torques make them interesting objects to control the magnetization at nanoscale. Here we show that a pair of coupled skyrmions of opposite chiralities can be stabilized in a symmetric magnetic bilayer system by combining Dzyaloshinskii-Moriya interaction (DMI) and dipolar coupling effects. This opens a path for skyrmion stabilization with lower DMI. We demonstrate in a device with asymmetric electrodes that such skyrmions can be independently written and shifted by electric current at large velocities. The skyrmionic nature of the observed quasiparticles is confirmed by the gyrotropic force. These results set the ground for emerging spintronic technologies where issues concerning skyrmion stability, nucleation and propagation are paramount.

4.
J Phys Condens Matter ; 27(32): 326002, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26213808

ABSTRACT

We have carried out measurements of domain wall dynamics in a Pt/Co/GdOx(t) wedge sample with perpendicular magnetic anisotropy. When driven by an easy-axis field Hz in the presence of an in-plane field Hx, the domain wall propagation is different along [Formula: see text]x, as expected for samples presenting Dzyaloshinskii-Moriya (DMI) interaction. In the creep regime, the sign and the value of the domain wall velocity asymmetry changes along the wedge. We show that in our samples the domain wall speed versus Hx curves in the creep regime cannot be explained simply in terms of the variation of the domain wall energy with Hx, as suggested by previous works. For this reason the strength and the sign of the DMI cannot be extracted from these measurements. To obtain reliable information on the DMI strength using magnetic field-induced domain wall dynamics, measurements have been performed with high fields, bringing the DW close to the flow regime of propagation. In this case we find large values of the DMI, consistent in magnitude and sign with those obtained from Brillouin light scattering measurements.

5.
Nat Commun ; 6: 6733, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25828294

ABSTRACT

The capacity to propagate magnetic domain walls with spin-polarized currents underpins several schemes for information storage and processing using spintronic devices. A key question involves the internal structure of the domain walls, which governs their response to certain current-driven torques such as the spin Hall effect. Here we show that magnetic microscopy based on a single nitrogen-vacancy defect in diamond can provide a direct determination of the internal wall structure in ultrathin ferromagnetic films under ambient conditions. We find pure Bloch walls in Ta/CoFeB(1 nm)/MgO, while left-handed Néel walls are observed in Pt/Co(0.6 nm)/AlOx. The latter indicates the presence of a sizable interfacial Dzyaloshinskii-Moriya interaction, which has strong bearing on the feasibility of exploiting novel chiral states such as skyrmions for information technologies.

6.
Phys Rev Lett ; 113(4): 047203, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105650

ABSTRACT

The nucleation of reversed magnetic domains in Pt/Co/AlO(x) microstructures with perpendicular anisotropy was studied experimentally in the presence of an in-plane magnetic field. For large enough in-plane field, nucleation was observed preferentially at an edge of the sample normal to this field. The position at which nucleation takes place was observed to depend in a chiral way on the initial magnetization and applied field directions. A quantitative explanation of these results is proposed, based on the existence of a sizable Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this interaction is that the energy of domain walls can become negative for in-plane fields smaller than the effective anisotropy field.

7.
Science ; 344(6190): 1366-9, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24948732

ABSTRACT

The control of domain walls in magnetic wires underpins an emerging class of spintronic devices. Propagation of these walls in imperfect media requires defects that pin them to be characterized on the nanoscale. Using a magnetic microscope based on a single nitrogen-vacancy (NV) center in diamond, we report domain-wall imaging on a 1-nanometer-thick ferromagnetic nanowire and directly observe Barkhausen jumps between two pinning sites spaced 50 nanometers apart. We further demonstrate in situ laser control of these jumps, which allows us to drag the domain wall along the wire and map the pinning landscape. Our work demonstrates the potential of NV microscopy to study magnetic nano-objects in complex media, whereas controlling domain walls with laser light may find an application in spintronic devices.

8.
Sci Rep ; 4: 4658, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24722395

ABSTRACT

Understanding the loss of magnetic order and the microscopic mechanisms involved in laser induced magnetization dynamics is one of the most challenging topics in today's magnetism research. While scattering between spins, phonons, magnons and electrons have been proposed as sources for dissipation of spin angular momentum, ultrafast spin dependent transport of hot electrons has been pointed out as a potential candidate to explain ultrafast demagnetization without resorting to any spin dissipation channel. Here we use time resolved magneto-optical Kerr measurements to extract the influence of spin dependent transport on the demagnetization dynamics taking place in magnetic samples with alternating domains with opposite magnetization directions. We unambiguously show that whatever the sample magnetic configuration, the demagnetization takes place during the same time, demonstrating that hot electrons spin dependent transfer between neighboring domains does not alter the ultrafast magnetization dynamics in our systems with perpendicular anisotropy and 140 nm domain sizes.

9.
Phys Rev Lett ; 111(21): 217203, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313522

ABSTRACT

We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics are driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI, and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an extended collective coordinate model where DMI and DW tilting are included. We propose a simple way to estimate the DMI in magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. These results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with structural inversion asymmetry.

10.
Nat Nanotechnol ; 8(11): 839-44, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24162000

ABSTRACT

Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii-Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial Dzyaloshinskii-Moriya interactions induced by the proximity to an adjacent layer with strong spin-orbit coupling. Skyrmions are promising candidates as information carriers for future information-processing devices due to their small size (down to a few nanometres) and to the very small current densities needed to displace skyrmion lattices. However, any practical application will probably require the creation, manipulation and detection of isolated skyrmions in magnetic thin-film nanostructures. Here, we demonstrate by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.

11.
Nat Commun ; 4: 2279, 2013.
Article in English | MEDLINE | ID: mdl-23900221

ABSTRACT

Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometre scale spatial resolution remains an outstanding challenge. Recently, a technique has emerged that employs a single nitrogen-vacancy defect in diamond as an atomic-size magnetometer, which promises significant advances. However, the effectiveness of the technique when applied to magnetic nanostructures remains to be demonstrated. Here we use a scanning nitrogen-vacancy magnetometer to image a magnetic vortex, which is one of the most iconic objects of nanomagnetism, owing to the small size (~10 nm) of the vortex core. We report three-dimensional, vectorial and quantitative measurements of the stray magnetic field emitted by a vortex in a ferromagnetic square dot, including the detection of the vortex core. We find excellent agreement with micromagnetic simulations, both for regular vortex structures and for higher-order magnetization states. These experiments establish scanning nitrogen-vacancy magnetometry as a practical and unique tool for fundamental studies in nanomagnetism.

12.
Nat Nanotechnol ; 7(10): 635-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22961306

ABSTRACT

Controlling the position of a magnetic domain wall with electric current may allow for new types of non-volatile memory and logic devices. To be practical, however, the threshold current density necessary for domain wall motion must be reduced below present values. Intrinsic pinning due to magnetic anisotropy, as recently observed in perpendicularly magnetized Co/Ni nanowires, has been shown to give rise to an intrinsic current threshold J(th)(0). Here, we show that domain wall motion can be induced at current densities 40% below J(th)(0) when an external magnetic field of the order of the domain wall pinning field is applied. We observe that the velocity of the domain wall motion is the vector sum of current- and field-induced velocities, and that the domain wall can be driven against the direction of a magnetic field as large as 2,000 Oe, even at currents below J(th)(0). We show that this counterintuitive phenomenon is triggered by Walker breakdown, and that the additive velocities provide a unique way of simultaneously determining the spin polarization of current and the Gilbert damping constant.

13.
Phys Rev Lett ; 109(10): 106601, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-23005312

ABSTRACT

We report experimental evidence of thermal effects on the displacement of vortex walls in NiFe nanostrips. With the use of nanosecond current pulses, a unidirectional motion of the magnetic domain walls towards the hotter part of the nanostrips is observed, in addition to current-induced domain wall motion. By tuning the heat dissipation in the samples and modeling the heat diffusion, we conclude that this unidirectional motion can only be explained by the presence of a temperature profile along the nanostrip. A quantitative analysis of the experiments shows that, on top of the classical thermodynamic pressure on the domain wall, another force, probably the magnonic spin Seebeck effect, is displacing the domain walls.

14.
J Phys Condens Matter ; 23(44): 446004, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-22005254

ABSTRACT

Domain wall dynamics produced by spin transfer torques is investigated in (Ga, Mn)As ferromagnetic semiconducting tracks with perpendicular anisotropy, close to the Curie temperature. The domain wall velocities are found to follow a linear flow regime which only slightly varies with temperature. Using the Döring inequality, boundaries of the spin polarization of the current are deduced. A comparison with the predictions of the mean field k·p theory leads to an estimation of the carrier density whose value is compatible with results published in the literature. The spin polarization of the current and the magnetization of the magnetic atoms present similar temperature variations. This leads to a weak temperature dependence of the spin drift velocity and thus of the domain wall velocity. A combined study of field- and current-driven motion and deformation of magnetic domains reveals a motion of domain walls in the steady state regime without transition to the precessional regime. The ratio between the non-adiabatic torque ß and the Gilbert damping factor α is shown to remain close to unity.

15.
Phys Rev Lett ; 104(13): 137202, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20481908

ABSTRACT

The magnetic susceptibility of self-organized two-dimensional Co nanodots on Au(111) has been measured as a function of their size in the 2-7 nm diameter range. We show that the activation energy for the thermal reversal displays a power law behavior with the dot volume. Atomic scale simulations based on the Heisenberg Hamiltonian show that this behavior is due to a deviation from the macrospin model for dot size as small as 3 nm in diameter. This discrepancy is attributed to finite temperature effects through the thermal excitation of spin-wave modes inside the particles.

16.
Science ; 298(5593): 555, 2002 Oct 18.
Article in English | MEDLINE | ID: mdl-12386324
17.
Science ; 290(5491): 466-7, 2000 Oct 20.
Article in English | MEDLINE | ID: mdl-17844284

ABSTRACT

As magnetic devices become smaller and faster, it is becoming increasingly important to understand the dynamics of magnetic domains on small spatial and temporal scales. In their Perspective, Miltat and Thiaville highlight the report by Acremann et al., whose magnetooptical microscope combines state of the art space and time resolution, thus allowing the precessional motion of magnetic domains to be studied directly. The dynamics they observe are complex, indicating that in both the space and time domains, neither the magnetization nor the applied field should be viewed as uniform.

18.
Phys Rev B Condens Matter ; 49(10): 6678-6688, 1994 Mar 01.
Article in English | MEDLINE | ID: mdl-10009388
19.
Pediatr Radiol ; 24(7): 506-8, 1994.
Article in English | MEDLINE | ID: mdl-7885787

ABSTRACT

Idiopathic infantile arterial calcification (IIAC) is a rare hereditary, fatal disease. Death occurs usually within the first 28 months of life. IIAC is characterized by calcifications along the internal elastic membrane and proliferation of the intimal layer of muscular arteries. Specific therapy consists of administration of diphosphonates, but its effectiveness has been a matter of controversy. We report a case treated with diphosphonates which has had an unusual outcome.


Subject(s)
Calcinosis/complications , Renal Artery Obstruction/complications , Vascular Diseases/complications , Arteries , Calcinosis/diagnostic imaging , Calcinosis/drug therapy , Diphosphonates/therapeutic use , Female , Humans , Infant, Newborn , Radiography , Renal Artery Obstruction/diagnostic imaging , Vascular Diseases/diagnostic imaging , Vascular Diseases/drug therapy
20.
Phys Rev B Condens Matter ; 31(11): 7124-7132, 1985 Jun 01.
Article in English | MEDLINE | ID: mdl-9935631
SELECTION OF CITATIONS
SEARCH DETAIL
...