Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 6(5): e19007, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21573222

ABSTRACT

OBJECTIVES: Few epidemiological studies have focused on the psychological health of high level athletes. This study aimed to identify the principal psychological problems encountered within French high level athletes, and the variations in their prevalence based on sex and the sport practiced. METHODS: Multivariate analyses were conducted on nationwide data obtained from the athletes' yearly psychological evaluations. RESULTS: A representative sample of 13% of the French athlete population was obtained. 17% of athletes have at least one ongoing or recent disorder, generalized anxiety disorder (GAD) being the most prevalent (6%), followed by non-specific eating disorders (4.2%). Overall, 20.2% of women had at least one psychopathology, against 15.1% in men. This female predominance applied to anxiety and eating disorders, depression, sleep problems and self-harming behaviors. The highest rates of GAD appeared in aesthetic sports (16.7% vs. 6.8% in other sports for men and 38.9% vs. 10.3% for women); the lowest prevalence was found in high risk sports athletes (3.0% vs. 3.5%). Eating disorders are most common among women in racing sports (14% vs. 9%), but for men were found mostly in combat sports (7% vs. 4.8%). DISCUSSION: This study highlights important differences in psychopathology between male and female athletes, demonstrating that the many sex-based differences reported in the general population apply to elite athletes. While the prevalence of psychological problems is no higher than in the general population, the variations in psychopathology in different sports suggest that specific constraints could influence the development of some disorders.


Subject(s)
Athletes/psychology , Sports/psychology , Adolescent , Adult , Anxiety Disorders/epidemiology , Child , Depression/epidemiology , Feeding and Eating Disorders/epidemiology , Female , Humans , Male , Multivariate Analysis , Sex Factors , Sleep Wake Disorders/epidemiology , Young Adult
2.
J Sports Sci ; 28(7): 789-96, 2010 May.
Article in English | MEDLINE | ID: mdl-20473822

ABSTRACT

Road cycling ranks among the most intense endurance exercises. Previous studies and mathematical models describing road cycling have not analysed performances per se. We describe the evolution of road cycling performance over the past 116 years. We studied the top ten cyclists' mean speeds in eight famous classic races and three European Grand Tours, using a previously published multi-exponential model that highlights the different progression periods of an event during the century. In addition, we measured an indicator of difficulty for the Tour de France by calculating the climbing index (i.e. the total altitude climbed over total distance). The eleven races' mean speed increased progressively from 23.13 km . h(-1) in 1892 to 41.19 +/- 2.03 km . h(-1) in 2008. Road cycling development, like other quantifiable disciplines, fits a piecewise progression pattern that follows three periods: before, between, and after the two World Wars. However, a fourth period begins after 1993, providing a speed progression of 6.38% from the third one. The Tour de France's climbing index also provided insight into a recent paradoxical relationship with speeds: when the climbing index increased, the winner's speed also increased. Our results show a major improvement (6.38%) in road cycling performance in the last 20 years and question the role of extra-physiological parameters in this recent progression.


Subject(s)
Altitude , Bicycling/physiology , Physical Endurance/physiology , France , Humans
3.
PLoS One ; 5(1): e8800, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20098706

ABSTRACT

The growth law for the development of top athletes performances remains unknown in quantifiable sport events. Here we present a growth model for 41351 best performers from 70 track and field (T&F) and swimming events and detail their characteristics over the modern Olympic era. We show that 64% of T&F events no longer improved since 1993, while 47% of swimming events stagnated after 1990, prior to a second progression step starting in 2000. Since then, 100% of swimming events continued to progress.We also provide a measurement of the atypicity for the 3919 best performances (BP) of each year in every event. The secular evolution of this parameter for T&F reveals four peaks; the most recent (1988) followed by a major stagnation. This last peak may correspond to the most recent successful attempt to push forward human physiological limits. No atypicity trend is detected in swimming. The upcoming rarefaction of new records in sport may be delayed by technological innovations, themselves depending upon economical constraints.


Subject(s)
Sports , Task Performance and Analysis , Humans
4.
J Sports Sci Med ; 9(2): 214-23, 2010.
Article in English | MEDLINE | ID: mdl-24149688

ABSTRACT

Sex is a major factor influencing best performances and world records. Here the evolution of the difference between men and women's best performances is characterized through the analysis of 82 quantifiable events since the beginning of the Olympic era. For each event in swimming, athletics, track cycling, weightlifting and speed skating the gender gap is fitted to compare male and female records. It is also studied through the best performance of the top 10 performers in each gender for swimming and athletics. A stabilization of the gender gap in world records is observed after 1983, at a mean difference of 10.0% ± 2.94 between men and women for all events. The gender gap ranges from 5.5% (800-m freestyle, swimming) to 18.8% (long jump). The mean gap is 10.7% for running performances, 17.5% for jumps, 8.9% for swimming races, 7.0% for speed skating and 8.7% in cycling. The top ten performers' analysis reveals a similar gender gap trend with a stabilization in 1982 at 11.7%, despite the large growth in participation of women from eastern and western countries, that coincided with later- published evidence of state-institutionalized or individual doping. These results suggest that women will not run, jump, swim or ride as fast as men. Key pointsSex is a major factor influencing best performances and world records.A stabilization of the gender gap in world records is observed after 1983, at a mean difference of 10.0% ± 2.94 between men and women for all events.The gender gap ranges from 5.5% (800-m freestyle, swimming) to 36.8% (weight lifting).The top ten performers' analysis reveals a similar gender gap trend with a stabilization in 1982 at 11.7%.Results suggest that women will not run, jump, swim or ride as fast as men.

5.
PLoS One ; 4(10): e7573, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19862324

ABSTRACT

A previous analysis of World Records (WR) has revealed the potential limits of human physiology through athletes' personal commitment. The impact of political factors on sports has only been studied through Olympic medals and results. Here we studied 2876 WR from 63 nations in four summer disciplines. We propose three new indicators and show the impact of historical, geographical and economical factors on the regional WR evolution. The south-eastward path of weighted annual barycenter (i.e. the average of country coordinates weighting by the WR number) shows the emergence of East Africa and China in WR archives. Home WR ratio decreased from 79.9% before the second World War to 23.3% in 2008, underlining sports globalization. Annual Cumulative Proportions (ACP, i.e. the cumulative sum of the WR annual rate) highlight the regional rates of progression. For all regions, the mean slope of ACP during the Olympic era is 0.0101, with a maximum between 1950 and 1989 (0.0156). For European countries, this indicator reflects major historical events (slowdown for western countries after 1945, slowdown for eastern countries after 1990). Mean North-American ACP slope is 0.0029 over the century with an acceleration between 1950 and 1989 at 0.0046. Russia takes off in 1935 and slows down in 1988 (0.0038). For Eastern Europe, maximal progression is seen between 1970 and 1989 (0.0045). China starts in 1979 with a maximum between 1990 and 2008 (0.0021), while other regions have largely declined (mean ACP slope for all other countries = 0.0011). A similar trend is observed for the evolution of the 10 best performers. The national analysis of WR reveals a precise and quantifiable link between the sport performances of a country, its historical or geopolitical context, and its steps of development.


Subject(s)
Athletes , Developing Countries , Politics , Data Collection , Geography , Humans , Models, Economic , Models, Statistical , Population Dynamics
6.
PLoS One ; 3(11): e3653, 2008.
Article in English | MEDLINE | ID: mdl-18985149

ABSTRACT

In order to understand the determinants and trends of human performance evolution, we analyzed ten outdoor events among the oldest and most popular in sports history. Best performances of the Oxford-Cambridge boat race (since 1836), the channel crossing in swimming (1875), the hour cycling record (1893), the Elfstedentocht speed skating race (1909), the cross country ski Vasaloppet (1922), the speed ski record (1930), the Streif down-hill in Kitzbühel (1947), the eastward and westward sailing transatlantic records (1960) and the triathlon Hawaii ironman (1978) all follow a similar evolutive pattern, best described through a piecewise exponential decaying model (r(2) = 0.95+/-0.07). The oldest events present highest progression curvature during their early phase. Performance asymptotic limits predicted from the model may be achieved in fourty years (2049+/-32 y). Prolonged progression may be anticipated in disciplines which further rely on technology such as sailing and cycling. Human progression in outdoor sports tends to asymptotic limits depending on physiological and environmental parameters and may temporarily benefit from further technological progresses.


Subject(s)
Biological Evolution , Ecosystem , Physical Education and Training/trends , Sports/history , Sports/trends , Task Performance and Analysis , Competitive Behavior , England , Geography , Hawaii , History, 19th Century , History, 20th Century , Humans , Models, Theoretical , Physical Endurance/physiology , Physical Fitness , Sports/physiology
7.
PLoS One ; 3(2): e1552, 2008 Feb 06.
Article in English | MEDLINE | ID: mdl-18253499

ABSTRACT

World records (WR) in sports illustrate the ultimate expression of human integrated muscle biology, through speed or strength performances. Analysis and prediction of man's physiological boundaries in sports and impact of external (historical or environmental) conditions on WR occurrence are subject to scientific controversy. Based on the analysis of 3263 WR established for all quantifiable official contests since the first Olympic Games, we show here that WR progression rate follows a piecewise exponential decaying pattern with very high accuracy (mean adjusted r(2) values = 0.91+/-0.08 (s.d.)). Starting at 75% of their estimated asymptotic values in 1896, WR have now reached 99%, and, present conditions prevailing, half of all WR will not be improved by more than 0,05% in 2027. Our model, which may be used to compare future athletic performances or assess the impact of international antidoping policies, forecasts that human species' physiological frontiers will be reached in one generation. This will have an impact on the future conditions of athlete training and on the organization of competitions. It may also alter the Olympic motto and spirit.


Subject(s)
Records/statistics & numerical data , Sports/physiology , Sports/trends , Humans , Physical Fitness/physiology , Sports/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...