Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 35(5): 1451-1462, 2021 05.
Article in English | MEDLINE | ID: mdl-33824465

ABSTRACT

Plasma cells (PCs) play an important role in the adaptive immune system through a continuous production of antibodies. We have demonstrated that PC differentiation can be modeled in vitro using complex multistep culture systems reproducing sequential differentiation process occurring in vivo. Here we present a comprehensive, temporal program of gene expression data encompassing human PC differentiation (PCD) using RNA sequencing (RNA-seq). Our results reveal 6374 differentially expressed genes classified into four temporal gene expression patterns. A stringent pathway enrichment analysis of these gene clusters highlights known pathways but also pathways largely unknown in PCD, including the heme biosynthesis and the glutathione conjugation pathways. Additionally, our analysis revealed numerous novel transcriptional networks with significant stage-specific overexpression and potential importance in PCD, including BATF2, BHLHA15/MIST1, EZH2, WHSC1/MMSET, and BLM. We have experimentally validated a potent role for BLM in regulating cell survival and proliferation during human PCD. Taken together, this RNA-seq analysis of PCD temporal stages helped identify coexpressed gene modules with associated up/downregulated transcription regulator genes that could represent major regulatory nodes for human PC maturation. These data constitute a unique resource of human PCD gene expression programs in support of future studies for understanding the underlying mechanisms that control PCD.


Subject(s)
Cell Differentiation/genetics , Plasma Cells/physiology , RNA/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Expression Regulation/genetics , Glutathione/genetics , Heme/genetics , Humans , Sequence Analysis, RNA/methods , Up-Regulation/genetics
2.
Nat Commun ; 10(1): 4521, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586061

ABSTRACT

Designing highly specific modulators of protein-protein interactions (PPIs) is especially challenging in the context of multiple paralogs and conserved interaction surfaces. In this case, direct generation of selective and competitive inhibitors is hindered by high similarity within the evolutionary-related protein interfaces. We report here a strategy that uses a semi-rational approach to separate the modulator design into two functional parts. We first achieve specificity toward a region outside of the interface by using phage display selection coupled with molecular and cellular validation. Highly selective competition is then generated by appending the more degenerate interaction peptide to contact the target interface. We apply this approach to specifically bind a single PDZ domain within the postsynaptic protein PSD-95 over highly similar PDZ domains in PSD-93, SAP-97 and SAP-102. Our work provides a paralog-selective and domain specific inhibitor of PSD-95, and describes a method to efficiently target other conserved PPI modules.


Subject(s)
Antibodies/chemistry , PDZ Domains , Peptides/chemistry , Protein Engineering , Protein Interaction Maps/drug effects , Animals , Antibodies/pharmacology , COS Cells , Chlorocebus aethiops , Disks Large Homolog 4 Protein/antagonists & inhibitors , Disks Large Homolog 4 Protein/metabolism , Drug Design , Epitope Mapping , Models, Molecular , Peptide Library , Peptides/pharmacology , Protein Binding , Recombinant Proteins/metabolism
3.
PLoS One ; 12(6): e0179793, 2017.
Article in English | MEDLINE | ID: mdl-28636654

ABSTRACT

FCRL4 is an immunoregulatory receptor that belongs to the Fc receptor-like (FCRL) family. In healthy individuals, FCRL4 is specifically expressed by memory B cells (MBCs) localized in sub-epithelial regions of lymphoid tissues. Expansion of FCRL4+ B cells has been observed in blood and other tissues in various infectious and autoimmune disorders. Currently, the mechanisms involved in pathological FCRL4+ B cell generation are actively studied, but they remain elusive. As in vivo FCRL4+ cells are difficult to access and to isolate, here we developed a culture system to generate in vitro FCRL4+ B cells from purified MBCs upon stimulation with soluble CD40 ligand and/or CpG DNA to mimic T-cell dependent and/or T-cell independent activation, respectively. After 4 days of stimulation, FCRL4+ B cells represented 17% of all generated cells. Transcriptomic and phenotypic analyses of in vitro generated FCRL4+ cells demonstrated that they were closely related to FCRL4+ tonsillar MBCs. They strongly expressed inhibitory receptor genes, as observed in exhausted FCRL4+ MBCs from blood samples of HIV-infected individuals with high viremia. In agreement, cell cycle genes were significantly downregulated and the number of cell divisions was two-fold lower in in vitro generated FCRL4+ than FCRL4- cells. Finally, due to their reduced proliferation and differentiation potential, FCRL4+ cells were less prone to differentiate into plasma cells, differently from FCRL4- cells. Our in vitro model could be of major interest for studying the biology of normal and pathological FCRL4+ cells.


Subject(s)
B-Lymphocytes/metabolism , Receptors, Fc/metabolism , ADP-ribosyl Cyclase 1/metabolism , Antigens, CD20/metabolism , B-Lymphocytes/cytology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/pharmacology , Down-Regulation , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Humans , Immunophenotyping , Phenotype , Receptors, Fc/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...