Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 181: 173-182, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36395981

ABSTRACT

In the past decade, oral inhalation has been a thriving focus of research to administer antibody directly to the lungs as an aerosol, for local treatment of respiratory diseases. Formulation of inhaled antibodies is central for the stability of antibody, lung safety and to ensure inhaler performances. Surfactants have already been shown to prevent antibody degradation during aerosolization, but little is known about the impact of other components of liquid formulations on the structural stability of antibodies. Here, we report for the first time to the best of our knowledge, a significant effect of the buffering system on monoclonal antibodies stability, during mesh-nebulization. While the monoclonal antibody extensively aggregated in citrate buffer after nebulization and required high concentration of polysorbate 80 (PS80) to maintain protein integrity, acetate and histidine buffers resulted in a slight to moderate aggregation without PS80 and low concentration of PS80 was sufficient to stabilize antibody during mesh-nebulization.

2.
Drug Deliv Transl Res ; 11(4): 1625-1633, 2021 08.
Article in English | MEDLINE | ID: mdl-33768475

ABSTRACT

Respiratory infections are life-threatening and therapeutic antibodies (Ab) have a tremendous opportunity to benefit to patients with pneumonia due to multidrug resistance bacteria or emergent virus, before a vaccine is manufactured. In respiratory infections, inhalation of anti-infectious Ab may be more relevant than intravenous (IV) injection-the standard route-to target the site of infection and improve Ab therapeutic index. One major challenge associated to Ab inhalation is to prevent protein instability during the aerosolization process. Ab drug development for IV injection aims to design a high-quality product, stable to different environment stress. In this study, we evaluated the suitability of Ab formulations developed for IV injection to be extended for inhalation delivery. We studied the aerosol characteristics and the aggregation profile of three Ab formulations developed for IV injection after nebulization, with two mesh nebulizers. Although the formulations for IV injection were compatible with mesh nebulization and deposition into the respiratory tract, the Ab were more unstable during nebulization than exposition to a vigorous shaking. Overall, our findings indicate that Ab formulations developed for IV delivery may not easily be repurposed for inhalation delivery and point to the requirement of a specific formulation development for inhaled Ab.


Subject(s)
Drug Delivery Systems , Nebulizers and Vaporizers , Administration, Inhalation , Aerosols , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...