Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(1): 102764, 2023 01.
Article in English | MEDLINE | ID: mdl-36463963

ABSTRACT

The formation of complexes between Rab11 and its effectors regulates multiple aspects of membrane trafficking, including recycling and ciliogenesis. WD repeat-containing protein 44 (WDR44) is a structurally uncharacterized Rab11 effector that regulates ciliogenesis by competing with prociliogenesis factors for Rab11 binding. Here, we present a detailed biochemical and biophysical characterization of the WDR44-Rab11 complex and define specific residues mediating binding. Using AlphaFold2 modeling and hydrogen/deuterium exchange mass spectrometry, we generated a molecular model of the Rab11-WDR44 complex. The Rab11-binding domain of WDR44 interacts with switch I, switch II, and the interswitch region of Rab11. Extensive mutagenesis of evolutionarily conserved residues in WDR44 at the interface identified numerous complex-disrupting mutations. Using hydrogen/deuterium exchange mass spectrometry, we found that the dynamics of the WDR44-Rab11 interface are distinct from the Rab11 effector FIP3, with WDR44 forming a more extensive interface with the switch II helix of Rab11 compared with FIP3. The WDR44 interaction was specific to Rab11 over evolutionarily similar Rabs, with mutations defining the molecular basis of Rab11 specificity. Finally, WDR44 can be phosphorylated by Sgk3, with this leading to reorganization of the Rab11-binding surface on WDR44. Overall, our results provide molecular detail on how WDR44 interacts with Rab11 and how Rab11 can form distinct effector complexes that regulate membrane trafficking events.


Subject(s)
GTP Phosphohydrolases , I-kappa B Kinase , Models, Molecular , rab GTP-Binding Proteins , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , I-kappa B Kinase/metabolism , Protein Binding , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism , Mass Spectrometry
2.
ACS Omega ; 7(33): 29517-29525, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033695

ABSTRACT

Antimicrobial photodynamic inactivation represents a promising and potentially greener alternative to conventional antimicrobials, and a solution for multidrug-resistant strains. The current study reports the development and characterization of tetra-substituted diazirine porphyrin covalently bonded to polyethylene terephthalate (PET) and its use as an antimicrobial surface. The diazirine moiety on the porphyrin was activated using a temperature of 120 °C, which initiated a C-H insertion mechanism that irreversibly functionalized the PET surface. Activation of the surface with white LED light in phosphate-buffered saline (PBS) led to singlet oxygen generation, which was detected via the degradation of 9,10-anthracenediylbis(methylene)dimalonic acid (ADMA) over time. The bactericidal effect of the 1O2-producing surface against Staphylococcus aureus was determined qualitatively and quantitatively. The growth of the pathogen beneath porphyrin-functionalized PET coupons was reduced; moreover, the PET coupons resulted in a 1.76-log reduction in cell counts after exposure to white LED light for 6 h. This is a promising material and platform for the development of safer antimicrobial surfaces, with applications in healthcare, food packaging, marine surfaces, and other surfaces in the environment.

3.
Membranes (Basel) ; 10(9)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872560

ABSTRACT

As potable water scarcity increases across the globe; it is imperative to identify energy and cost-effective processes for producing drinking-water from non-traditional sources. One established method is desalination of brackish and seawater via reverse osmosis (RO). However, the buildup of microorganisms at the water-membrane interface, known as biofouling, clogs RO membranes over time, increasing energy requirements and cost. To investigate biofouling mitigation methods, studies tend to focus on single-species biofilms; choice of organism is crucial to producing useful results. To determine a best-practice organism for studying antimicrobial treatment of biofilms, with specific interest in biofouling of RO membranes, we answered the following two questions, each via its own semi-systematic review: 1. Which organisms are commonly used to test antimicrobial efficacy against biofilms on RO membranes? 2. Which organisms are commonly identified via genetic analysis in biofilms on RO membranes? We then critically review the results of two semi-systematic reviews to identify pioneer organisms from the listed species. We focus on pioneer organisms because they initiate biofilm formation, therefore, inhibiting these organisms specifically may limit biofilm formation in the first place. Based on the analysis of the results, we recommend utilizing Pseudomonas aeruginosa for future single-species studies focused on biofilm treatment including, but not limited to, biofouling of RO membranes.

4.
Rev Sci Instrum ; 89(10): 10G103, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399889

ABSTRACT

A new configuration based on the recent off-line calibrations of the gated laser entrance hole diagnostic on the National Ignition Facility provides 4-8 interleaved frames per experiment using the standard two frame sensor settings. Since its implementation, the new design has greatly increased the data return for hundreds of experiments at the National Ignition Facility. The large quantity of images from a variety of physics campaigns has revealed information on plasma evolution in hohlraums.

5.
Appl Opt ; 44(22): 4666-70, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16075879

ABSTRACT

We have constructed an achromatic half-wave plate (AHWP) suitable for the millimeter wavelength band. The AHWP was made from a stack of three sapphire a-cut birefringent plates with the opticalaxes of the middle plate rotated by 50.5 deg with respect to the aligned axes of the other plates. The measured modulation efficiency of the AHWP at 110 GHz was 96 +/- 1.5%. In contrast, the modulation efficiency of a single sapphire plate of the same thickness was 43 +/- 4%. Both results are in close agreement with theoretical predictions. The modulation efficiency of the AHWP was constant as a function of incidence angles between 0 and 15 deg. We discuss design parameters of an AHWP in the context of astrophysical broadband polarimetry at the millimeter wavelength band.

SELECTION OF CITATIONS
SEARCH DETAIL
...