Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 65(8): 085004, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32084661

ABSTRACT

This paper presents a prospective study evaluating the impact on image quality and quantitative dynamic contrast-enhanced (DCE)-MRI perfusion parameters when varying the number of respiratory motion states when using an eXtra-Dimensional Golden-Angle Radial Sparse Parallel (XD-GRASP) MRI sequence. DCE acquisition was performed using a 3D stack-of-stars gradient-echo golden-angle radial acquisition in free-breathing with 100 spokes per motion state and temporal resolution of 6 s/volume, and using a non-rigid motion compensation to align different motion states. Parametric analysis was conducted using a dual-input single-compartment model. Nonparametric analysis was performed on the time-intensity curves. A total of 22 hepatocellular carcinomas (size: 11-52 mm) were evaluated. XD-GRASP reconstructed with increasing number of spokes for each motion state increased the signal-to-noise ratio (SNR) (p < 0.05) but decreased temporal resolution (0.04 volume/s vs 0.17 volume/s for one motion state) (p < 0.05). A visual scoring by an experienced radiologist show no change between increasing number of motion states with same number of spokes using the Likert score. The normalized maximum intensity time ratio, peak enhancement ratio and tumor arterial fraction increased with decreasing number of motion states (p < 0.05) while the transfer constant from the portal venous plasma to the surrounding tissue significantly decreased (p < 0.05). These same perfusion parameters show a significant difference in case of tumor displacement more than 1 cm (p < 0.05) whereas in the opposite case there was no significant variation. While a higher number of motion states and higher number of spokes improves SNR, the resulting lower temporal resolution can influence quantitative parameters that capture rapid signal changes. Finally, fewer displacement compensation is advantageous with lower number of motion state due to the higher temporal resolution. XD-GRASP can be used to perform quantitative perfusion measures in the liver, but the number of motion states may significantly alter some quantitative parameters.


Subject(s)
Contrast Media , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Magnetic Resonance Imaging , Movement , Humans , Male , Prospective Studies , Respiration , Signal-To-Noise Ratio , Time Factors
2.
Magn Reson Imaging ; 62: 78-86, 2019 10.
Article in English | MEDLINE | ID: mdl-31247250

ABSTRACT

PURPOSE: To identify quantitative dynamic contrast-enhanced (DCE)-MRI perfusion parameters indicating tumor response of hepatocellular carcinoma (HCC) to transarterial chemoembolization (TACE). MATERIALS AND METHODS: This prospective pilot study was approved by our institutional review board; written and informed consent was obtained for each participant. Patients underwent DCE-MRI examinations before and after TACE. A variable flip-angle unenhanced 3D mDixon sequence was performed for T1 mapping. A dynamic 4D mDixon sequence was performed after contrast injection for assessing dynamic signal enhancement. Nonparametric analysis was conducted on the time-intensity curves. Parametric analysis was performed on the time-concentration curves using a dual-input single-compartment model. Treatment response according to Liver Reporting and Data System (LI-RADS) v2018 was used as the reference standard. The comparisons within groups (before vs. after treatment) and between groups (nonviable vs. equivocal or viable tumor) were performed using nonparametric bootstrap taking into account the clustering effect of lesions in patients. RESULTS: Twenty-eight patients with 52 HCCs (size: 10-104 mm) were evaluated. For nonviable tumors (n = 27), time to peak increased from 62.5 ±â€¯18.2 s before to 83.3 ±â€¯12.8 s after treatment (P< 0.01). For equivocal or viable tumors (n = 25), time to peak and mean transit time significantly increased (from 54.4 ±â€¯24.1 s to 69.5 ±â€¯18.9 s, P < 0.01 and from 14.2 ±â€¯11.8 s to 33.9 ±â€¯36.8 s, P= 0.01, respectively) and the transfer constant from the extracellular and extravascular space to the central vein significantly decreased from 14.8 ±â€¯14.1 to 8.1 ±â€¯9.1 s-1 after treatment (P= 0.01). CONCLUSION: This prospective pilot DCE-MRI study showed that time to peak significantly changed after TACE treatment for both groups (nonviable tumors and equivocal or viable tumors). In our cohort, several perfusion parameters may provide an objective marker for differentiation of treatment response after TACE in HCC patients.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Chemoembolization, Therapeutic , Contrast Media/pharmacology , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Aged , Carcinoma, Hepatocellular/pathology , Female , Humans , Liver Neoplasms/pathology , Male , Middle Aged , Observer Variation , Pilot Projects , Prospective Studies , Reproducibility of Results , Veins/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...