Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 243(3): 330-9, 2008 Jan 20.
Article in English | MEDLINE | ID: mdl-18063289

ABSTRACT

INTRODUCTION: Perfluorooctanesulfonate (PFOS) is widely distributed and persistent in humans and wildlife. Prior toxicological studies have reported decreased total and free thyroid hormones in serum without a major compensatory rise in thyrotropin (TSH) or altered thyroid gland histology. Although these animals (rats, mice and monkeys) might have maintained an euthyroid state, the basis for hypothyroxinemia remained unclear. We undertook this study to investigate the causes for the PFOS-induced reduction of serum total thyroxine (TT4) in rats. HYPOTHESES: We hypothesized that exposure to PFOS may increase free thyroxine (FT4) in the rat serum due to the ability of PFOS to compete with thyroxine for binding proteins. The increase in FT4 would increase the availability of the thyroid hormone to peripheral tissues for utilization, metabolic conversation, and excretion. We also hypothesized that PFOS does not directly interfere with the regulatory functions of the hypothalamic-pituitary-thyroid (HPT) axis in rats. EXPERIMENTS: Three experimental designs were employed to test these hypotheses. (1) Female Sprague-Dawley (SD) rats were given a single oral dose of 15 mg potassium PFOS/kg body weight. At intervals of 2, 6, and 24h thereafter, measurements were made for serum FT4, TT4, triiodothyronine (TT3), reverse triiodothyronine (rT3), thryrotropin (TSH), and PFOS concentrations, as well as liver PFOS concentrations, UDP-glucuronosyltransferase 1A (UGT1A) family mRNA transcripts, and malic enzyme (ME) mRNA transcripts and activity. (2) To provide evidence for increased uptake and metabolism of thyroxine (T4), 125 I-T4 was given to male and female SD rats by intravenous injection, followed in 2h by a single oral dose of 15 mg potassium PFOS/kg body weight. 125 I radioactivity was determined in urine and feces collected over a 24-h period and in serum and liver collected at 24h. (3) To assess the potentials effect of PFOS on the hypothalamic-pituitary-thyroid axis, over an 8-day period, groups of male SD rats were given PFOS (3mg/kg-d), propyl thiouracil (PTU, 10 microg/mL in water), or PTU and PFOS in combination, with controls receiving 0.5% Tween 20 vehicle. On days 1, 3, 7, and 8, TT4, TT3, and TSH were monitored. On day 8, pituitaries were removed and placed in static culture for assessment of thyrotropin releasing hormone (TRH)-mediated release of TSH. RESULTS: (1) PFOS transiently increased FT4 and decreased TSH within 6h, with values returning to control levels by 24h. TT4 was decreased by 55% over a 24-h period. TT3 and rT3 were decreased at 24h to a lesser extent than TT4. ME mRNA transcripts were increased at 2h and activity was increased at 24h. UGT1A mRNA transcripts were increased at 2 and 6h. (2) 125 I decreased in serum and liver relative to controls and consistent with a reduction in serum TT4. Concomitantly, 125 I activity was increased in urine and feces collected from PFOS-treated rats. (3) During the 8 days of dosing with PFOS, TSH was not elevated in male rats, while TT4 and TT3 were decreased. Pituitary response to TRH-mediated TSH release was not diminished after 8-daily oral doses of PFOS. CONCLUSIONS: These findings suggest that oral dosing in rats with PFOS results in transiently increased tissue availability of the thyroid hormones and turnover of T4 with a resulting reduction in serum TT4. PFOS does not induce a classical hypothyroid state under dosing conditions employed nor does it alter HPT activities.


Subject(s)
Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Pituitary Gland/drug effects , Thyroid Hormones/blood , Administration, Oral , Alkanesulfonic Acids/administration & dosage , Alkanesulfonic Acids/blood , Animals , Chromatography, Liquid , Dose-Response Relationship, Drug , Feces/chemistry , Female , Fluorocarbons/administration & dosage , Fluorocarbons/blood , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Iodine Radioisotopes , Liver/drug effects , Liver/metabolism , Luminescent Measurements , Male , Mass Spectrometry , Pituitary Gland/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radioimmunoassay , Rats , Rats, Sprague-Dawley , Thyrotropin-Releasing Hormone/analysis , Thyroxine/blood , Time Factors , Triiodothyronine/blood
2.
Toxicology ; 239(1-2): 15-33, 2007 Sep 24.
Article in English | MEDLINE | ID: mdl-17681415

ABSTRACT

Perfluorooctanoic acid (PFOA) is a stable perfluoroalkyl acid used to synthesize fluoropolymers during the manufacture of a wide variety of products. Concerns have been raised over the potential health effects of PFOA because it is persistent in the environment and can be detected in blood and other tissues of many animal species, including humans. PFOA has also been shown to induce growth deficits and mortality in murine neonates. To better understand the mechanism of PFOA induced developmental toxicity, lung and liver gene expression profiling was conducted in PFOA-exposed full-term mouse fetuses. Thirty timed-pregnant CD-1 mice were orally dosed from gestation days 1-17 with either 0, 1, 3, 5, or 10mg/(kgday) PFOA in water. At term, fetal lung and liver were collected, total RNA prepared, and samples pooled from three fetuses per litter. Five biological replicates consisting of individual litter samples were then evaluated for each treatment group using Affymetrix mouse 430_2 microarrays. The expression of genes related to fatty acid catabolism was altered in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with transactivation of PPARalpha, although, with regard to bile acid biosynthesis and glucose metabolism, non-PPARalpha related effects were suggested as well. Additional studies will be needed to more thoroughly address the role of PPARalpha, and other nuclear receptors, in PFOA mediated developmental toxicity.


Subject(s)
Caprylates/toxicity , Environmental Pollutants/toxicity , Fetal Development/drug effects , Fluorocarbons/toxicity , Gene Expression Profiling , Gene Expression Regulation, Developmental/drug effects , Liver/drug effects , Lung/drug effects , Administration, Oral , Animals , Dose-Response Relationship, Drug , Fatty Acids/metabolism , Female , Fetal Development/physiology , Liver/embryology , Liver/metabolism , Lung/embryology , Lung/metabolism , Maternal Exposure , Mice , Mice, Inbred Strains , Oligonucleotide Array Sequence Analysis , Pregnancy , RNA, Messenger/metabolism
3.
Toxicology ; 234(1-2): 21-33, 2007 May 05.
Article in English | MEDLINE | ID: mdl-17368689

ABSTRACT

Decreases in serum total thyroxine (TT4) and free thyroxine (FT4) without a compensatory rise in thyroid stimulating hormone (thyrotropin or TSH) or histological changes of the thyroid have been observed in studies with perfluorooctanesulfonate (PFOS) treatments in rats. Prior observations do not fit the clinical profile of a hypothyroid state. PFOS is known to compete with fatty acids for albumin binding, and serum free fatty acids (FFA) are known to interfere with FT4 measurement using analog methods due to competition for protein binding. Therefore, we hypothesized that measured decreases in serum FT4 by analog methods in the presence of PFOS were due to carrier protein binding interference. We compared FT4 analog assay methods with a reference method using equilibrium dialysis (ED-RIA) for FT4 measurement in rat sera in vitro and in vivo. We also measured hepatic malic enzyme mRNA transcripts and activity as a marker for hepatic thyroid hormone response. PFOS did not reduce serum TT4 and FT4 in vitro at concentrations up to 200 microM. After three daily 5mg/kg oral doses of potassium PFOS to female rats, serum TSH and FT4 by ED-RIA were unchanged (although FT4 determined by two common analog methods was decreased), and malic enzyme was not suppressed. These data suggest that prior reports of reduced free thyroid hormone in the presence of PFOS were due to negative bias in analog methods and that short-term PFOS treatment does not suppress the physiological thyroid status in rats. A reference method such as ED-RIA should be used for determination of serum FT4 in the presence of PFOS.


Subject(s)
Alkanesulfonic Acids/blood , Fluorocarbons/blood , Thyroxine/blood , Administration, Oral , Alkanesulfonic Acids/administration & dosage , Animals , Clinical Laboratory Techniques/standards , Dose-Response Relationship, Drug , Female , Fluorocarbons/administration & dosage , Hemodialysis Solutions/chemistry , Liver/drug effects , Liver/enzymology , Luminescent Measurements/methods , Malate Dehydrogenase/blood , Malate Dehydrogenase/drug effects , Malate Dehydrogenase/genetics , Oleic Acid/pharmacology , RNA/genetics , RNA/metabolism , Radioimmunoassay/methods , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry/methods , Thyrotropin/blood , Thyrotropin/immunology
4.
Toxicol Sci ; 95(2): 462-73, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17098816

ABSTRACT

Perfluorooctanoic acid (PFOA) is a persistent pollutant and is detectable in human serum (5 ng/ml in the general population of the Unites States). PFOA is used in the production of fluoropolymers which have applications in the manufacture of a variety of industrial and commercial products (e.g., textiles, house wares, electronics). PFOA is developmentally toxic and in mice affects growth, development, and viability of offspring. This study segregates the contributions of gestational and lactational exposures and considers the impact of restricting exposure to specific gestational periods. Pregnant CD-1 mice were dosed on gestation days (GD) 1-17 with 0, 3, or 5 mg PFOA/kg body weight, and pups were fostered at birth to give seven treatment groups: unexposed controls, pups exposed in utero (3U and 5U), lactationally (3L and 5L), or in utero + lactationally (3U + L and 5U + L). In the restricted exposure (RE) study, pregnant mice received 5 mg PFOA/kg from GD7-17, 10-17, 13-17, or 15-17 or 20 mg on GD15-17. In all PFOA-treated groups, dam weight gain, number of implantations, and live litter size were not adversely affected and relative liver weight increased. Treatment with 5 mg/kg on GD1-17 increased the incidence of whole litter loss and pups in surviving litters had reduced birth weights, but effects on pup survival from birth to weaning were only affected in 5U + L litters. In utero exposure (5U), in the absence of lactational exposure, was sufficient to produce postnatal body weight deficits and developmental delay in the pups. In the RE study, birth weight and survival were reduced by 20 mg/kg on GD15-17. Birth weight was also reduced by 5 mg/kg on GD7-17 and 10-17. Although all PFOA-exposed pups had deficits in postnatal weight gain, only those exposed on GD7-17 and 10-17 also showed developmental delay in eye opening and hair growth. In conclusion, the postnatal developmental effects of PFOA are due to gestational exposure. Exposure earlier in gestation produced stronger responses, but further study is needed to determine if this is a function of higher total dose or if there is a developmentally sensitive period.


Subject(s)
Body Weight/drug effects , Caprylates/toxicity , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Animals , Birth Weight/drug effects , Caprylates/blood , Environmental Pollutants/blood , Female , Fluorocarbons/blood , Gestational Age , Lactation , Litter Size/drug effects , Male , Mice , Mice, Inbred Strains , Organ Size/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/blood
5.
Toxicol Sci ; 96(1): 133-44, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17132714

ABSTRACT

Perfluorooctanoic acid (PFOA), with diverse and widespread commercial and industrial applications, has been detected in human and wildlife sera. Previous mouse studies linked prenatal PFOA exposure to decreased neonatal body weights (BWs) and survival in a dose-dependent manner. To determine whether effects were linked to gestational time of exposure or to subsequent lactational changes, timed-pregnant CD-1 mice were orally dosed with 5 mg PFOA/kg on gestation days (GD) 1-17, 8-17, 12-17, or vehicle on GD 1-17. PFOA exposure had no effect on maternal weight gain or number of live pups born. Mean pup BWs on postnatal day (PND) 1 in all PFOA-exposed groups were significantly reduced and decrements persisted until weaning. Mammary glands from lactating dams and female pups on PND 10 and 20 were scored based on differentiation or developmental stages. A significant reduction in mammary differentiation among dams exposed GD 1-17 or 8-17 was evident on PND 10. On PND 20, delays in normal epithelial involution and alterations in milk protein gene expression were observed. All exposed female pups displayed stunted mammary epithelial branching and growth at PND 10 and 20. While control litters at PND 10 and 20 had average scores of 3.1 and 3.3, respectively, all treated litters had scores of 1.7 or less, with no progression of duct epithelial growth evident over time. BW was an insignificant covariate for these effects. These findings suggest that in addition to gestational exposure, abnormal lactational development of dams may play a role in early growth retardation of developmentally exposed offspring.


Subject(s)
Caprylates/toxicity , Cell Differentiation/drug effects , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Mammary Glands, Animal/drug effects , Prenatal Exposure Delayed Effects , Administration, Oral , Animals , Animals, Newborn , Body Weight/drug effects , Caprylates/administration & dosage , Caprylates/blood , Caprylates/metabolism , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Environmental Pollutants/blood , Environmental Pollutants/metabolism , Female , Fluorocarbons/administration & dosage , Fluorocarbons/blood , Fluorocarbons/metabolism , Gene Expression Regulation/drug effects , Gestational Age , Liver/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Maternal Exposure , Mice , Milk Proteins/metabolism , Pregnancy , RNA, Messenger , Time Factors
6.
Toxicol Pathol ; 34(7): 895-902, 2006.
Article in English | MEDLINE | ID: mdl-17178690

ABSTRACT

Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepatocellular tumors and/or rat thyroid follicular cell tumors. The particular mode of toxic and tumorigenic action for these compounds is not known, however it has been proposed that triadimefon-induced rat thyroid tumors arise through the specific mechanism of increased TSH. The present study was designed to identify commonalities of effects across the different conazoles and to determine unique features of the tissue responses that suggest a toxicity pathway and a mode of action for the observed thyroid response for triadimefon. Male Wistar/Han rats were treated with triadimefon (100, 500, 1800 ppm), propiconazole (100, 500, 2500 ppm), or myclobutanil (100, 500, 2000 ppm) in feed for 4, 30, or 90 days. The rats were evaluated for clinical signs, body and liver weight, histopathology of thyroid and liver, hepatic metabolizing enzyme activity, and serum T3, T4, TSH, and cholesterol levels. There was a dose-dependent increase in liver weight but not body weight for all treatments. The indication of cytochrome induction, pentoxyresorufin O-dealkylation (PROD) activity, had a dose-related increase at all time points for all conazoles. Uridine diphopho-glucuronosyl transferase (UDPGT), the T4 metabolizing enzyme measured as glucuronidation of 1-naphthol, was induced to the same extent after 30 and 90 days for all three conazoles. Livers from all high dose treated rats had centrilobular hepatocyte hypertrophy after 4 days, while only triadimefon and propiconazole treated rats had hepatocyte hypertrophy after 30 days, and only triadimefon treated rats had hepatocyte hypertrophy after 90 days. Thyroid follicular cell hypertrophy, increased follicular cell proliferation, and colloid depletion were present only after 30 days in rats treated with the high dose of triadimefon. A dose-dependent decrease in T4 was present after 4 days with all 3 compounds but only the high doses of propiconazole and triadimefon produced decreased T4 after 30 days. T3 was decreased after high-dose triadimefon after 4 days and in a dose-dependent manner for all compounds after 30 days. Thyroid hormone levels did not differ from control values after 90 days and TSH was not increased in any exposure group. A unique pattern of toxic responses was not identified for each conazole and the hypothesized mode of action for triadimefon-induced thyroid gland tumors was not supported by the data.


Subject(s)
Fungicides, Industrial/toxicity , Nitriles/toxicity , Triazoles/toxicity , Animals , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Hormones/blood , Lipids/blood , Liver/drug effects , Liver/enzymology , Male , Organ Size/drug effects , Rats , Rats, Wistar , Thyroid Neoplasms/chemically induced , Thyroid Neoplasms/pathology
7.
Toxicol Sci ; 90(2): 510-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16415327

ABSTRACT

Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed-pregnant CD-1 mice were given 1, 3, 5, 10, 20, or 40 mg/kg PFOA by oral gavage daily from gestational day (GD) 1 to 17; controls received an equivalent volume (10 ml/kg) of water. PFOA treatment produced dose-dependent full-litter resorptions; all dams in the 40-mg/kg group resorbed their litters. Weight gain in dams that carried pregnancy to term was significantly lower in the 20-mg/kg group. At GD 18, some dams were sacrificed for maternal and fetal examinations (group A), and the rest were treated once more with PFOA and allowed to give birth (group B). Postnatal survival, growth, and development of the offspring were monitored. PFOA induced enlarged liver in group A dams at all dosages, but did not alter the number of implantations. The percent of live fetuses was lower only in the 20-mg/kg group (74 vs. 94% in controls), and fetal weight was also significantly lower in this group. However, no significant increase in malformations was noted in any treatment group. The incidence of live birth in group B mice was significantly lowered by PFOA: ca. 70% for the 10- and 20-mg/kg groups compared to 96% for controls. Postnatal survival was severely compromised at 10 or 20 mg/kg, and moderately so at 5 mg/kg. Dose-dependent growth deficits were detected in all PFOA-treated litters except the 1-mg/kg group. Significant delays in eye-opening (up to 2-3 days) were noted at 5 mg/kg and higher dosages. Accelerated sexual maturation was observed in male offspring, but not in females. These data indicate maternal and developmental toxicity of PFOA in the mouse, leading to early pregnancy loss, compromised postnatal survival, delays in general growth and development, and sex-specific alterations in pubertal maturation.


Subject(s)
Animals, Newborn/growth & development , Caprylates/toxicity , Fetal Development/drug effects , Fluorocarbons/toxicity , Prenatal Exposure Delayed Effects , Animals , Caprylates/blood , Caprylates/pharmacokinetics , Female , Fluorocarbons/blood , Fluorocarbons/pharmacokinetics , Male , Mice , Mice, Inbred Strains , Pregnancy , Rats , Rats, Sprague-Dawley , Sex Factors , Species Specificity
8.
Toxicol Sci ; 74(2): 382-92, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12773772

ABSTRACT

The postnatal effects of in utero exposure to perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestation day (GD) 2 to GD 21; pregnant CD-1 mice were treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 18. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. In the highest dosage groups (10 mg/kg for rat and 20 mg/kg for mouse), the neonates became pale, inactive, and moribund within 30-60 min, and all died soon afterward. In the 5 mg/kg (rat) and 15 mg/kg (mouse) dosage groups, the neonates also became moribund but survived for a longer period of time (8-12 h). Over 95% of these animals died within 24 h. Approximately 50% of offspring died at 3 mg/kg for rat and 10 mg/kg for mouse. Cross-fostering the PFOS-exposed rat neonates (5 mg/kg) to control nursing dams failed to improve survival. Serum concentrations of PFOS in newborn rats mirrored the maternal administered dosage and were similar to those in the maternal circulation at GD 21; PFOS levels in the surviving neonates declined in the ensuing days. Small but significant and persistent growth lags were detected in surviving rat and mouse pups exposed to PFOS prenatally, and slight delays in eye opening were noted. Significant increases in liver weight were observed in the PFOS-exposed mouse pups. Serum thyroxine levels were suppressed in the PFOS-treated rat pups, although triiodothyronine and thyroid-stimulating hormone [TSH] levels were not altered. Choline acetyltransferase activity (an enzyme that is sensitive to thyroid status) in the prefrontal cortex of rat pups exposed to PFOS prenatally was slightly reduced, but activity in the hippocampus was not affected. Development of learning, determined by T-maze delayed alternation in weanling rats, was not affected by PFOS exposure. These results indicate that in utero exposure to PFOS severely compromised postnatal survival of neonatal rats and mice, and caused delays in growth and development that were accompanied by hypothyroxinemia in the surviving rat pups.


Subject(s)
Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Longevity/drug effects , Maternal Exposure , Prenatal Exposure Delayed Effects , Teratogens/toxicity , Administration, Oral , Alkanesulfonic Acids/administration & dosage , Alkanesulfonic Acids/pharmacokinetics , Animals , Animals, Newborn/blood , Body Weight/drug effects , Choline O-Acetyltransferase/metabolism , Dose-Response Relationship, Drug , Female , Fluorocarbons/administration & dosage , Fluorocarbons/pharmacokinetics , Liver/drug effects , Liver/pathology , Mice , Mice, Inbred Strains , Organ Size/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/enzymology , Pregnancy/blood , Rats , Rats, Sprague-Dawley , Teratogens/pharmacokinetics , Thyroxine/blood
9.
Toxicol Sci ; 74(2): 369-81, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12773773

ABSTRACT

The maternal and developmental toxicities of perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. PFOS is an environmentally persistent compound used as a surfactant and occurs as a degradation product of both perfluorooctane sulfonyl fluoride and substituted perfluorooctane sulfonamido components found in many commercial and consumer applications. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestational day (GD) 2 to GD 20; CD-1 mice were similarly treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 17. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). Maternal weight gain, food and water consumption, and serum chemistry were monitored. Rats were euthanized on GD 21 and mice on GD 18. PFOS levels in maternal serum and in maternal and fetal livers were determined. Maternal weight gains in both species were suppressed by PFOS in a dose-dependent manner, likely attributed to reduced food and water intake. Serum PFOS levels increased with dosage, and liver levels were approximately fourfold higher than serum. Serum thyroxine (T4) and triiodothyronine (T3) in the PFOS-treated rat dams were significantly reduced as early as one week after chemical exposure, although no feedback response of thyroid-stimulating hormone (TSH) was observed. A similar pattern of reduction in T4 was also seen in the pregnant mice. Maternal serum triglycerides were significantly reduced, particularly in the high-dose groups, although cholesterol levels were not affected. In the mouse dams, PFOS produced a marked enlargement of the liver at 10 mg/kg and higher dosages. In the rat fetuses, PFOS was detected in the liver but at levels nearly half of those in the maternal counterparts, regardless of administered doses. In both rodent species, PFOS did not alter the numbers of implantations or live fetuses at term, although small deficits in fetal weight were noted in the rat. A host of birth defects, including cleft palate, anasarca, ventricular septal defect, and enlargement of the right atrium, were seen in both rats and mice, primarily in the 10 and 20 mg/kg dosage groups, respectively. Our results demonstrate both maternal and developmental toxicity of PFOS in the rat and mouse.


Subject(s)
Abnormalities, Drug-Induced , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Maternal Exposure , Reproduction/drug effects , Teratogens/toxicity , Administration, Oral , Alkanesulfonic Acids/administration & dosage , Alkanesulfonic Acids/pharmacokinetics , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Drinking/drug effects , Eating/drug effects , Female , Fetal Weight/drug effects , Fetus/drug effects , Fetus/metabolism , Fluorocarbons/administration & dosage , Fluorocarbons/pharmacokinetics , Liver/drug effects , Liver/pathology , Mice , Mice, Inbred Strains , Organ Size/drug effects , Pregnancy/blood , Rats , Rats, Sprague-Dawley , Teratogens/pharmacokinetics , Thyroxine/blood , Triglycerides/blood , Triiodothyronine/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...