Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 2553, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137893

ABSTRACT

Bacterial biofilms are surface-attached communities that are difficult to eradicate due to a high tolerance to antimicrobial agents. The use of non-biocidal surface-active compounds to prevent the initial adhesion and aggregation of bacterial pathogens is a promising alternative to antibiotic treatments and several antibiofilm compounds have been identified, including some capsular polysaccharides released by various bacteria. However, the lack of chemical and mechanistic understanding of the activity of these polymers limits their use to control biofilm formation. Here, we screen a collection of 31 purified capsular polysaccharides and first identify seven new compounds with non-biocidal activity against Escherichia coli and/or Staphylococcus aureus biofilms. We measure and theoretically interpret the electrophoretic mobility of a subset of 21 capsular polysaccharides under applied electric field conditions, and we show that active and inactive polysaccharide polymers display distinct electrokinetic properties and that all active macromolecules share high intrinsic viscosity features. Despite the lack of specific molecular motif associated with antibiofilm properties, the use of criteria including high density of electrostatic charges and permeability to fluid flow enables us to identify two additional capsular polysaccharides with broad-spectrum antibiofilm activity. Our study therefore provides insights into key biophysical properties discriminating active from inactive polysaccharides. The characterization of a distinct electrokinetic signature associated with antibiofilm activity opens new perspectives to identify or engineer non-biocidal surface-active macromolecules to control biofilm formation in medical and industrial settings.


Subject(s)
Anti-Infective Agents , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Biofilms , Anti-Bacterial Agents/pharmacology , Bacteria , Polymers , Microbial Sensitivity Tests
2.
Gene Ther ; 30(5): 421-428, 2023 05.
Article in English | MEDLINE | ID: mdl-36316446

ABSTRACT

Lipid nanoparticles (LNPs) are currently the most advanced non-viral clinically approved messenger ribonucleic acid (mRNA) delivery systems. The ability of a mRNA vaccine to have a therapeutic effect is related to the capacity of LNPs to deliver the nucleic acid intact into cells. The role of LNPs is to protect mRNA, especially from degradation by ribonucleases (RNases) and to allow it to access the cytoplasm of cells where it can be translated into the protein of interest. LNPs enter cells by endocytosis and their size is a critical parameter impacting their cellular internalization. In this work, we studied different formulation process parameters impacting LNPs size. Taylor dispersion analysis (TDA) was used to determine the LNPs size and size distribution and the results were compared with those obtained by Dynamic Light Scattering (DLS). TDA was also used to study both the degradation of mRNA in the presence of RNases and the percentage of mRNA encapsulation within LNPs.


Subject(s)
Liposomes , Nanoparticles , Ribonucleases , RNA, Messenger , Lipids , mRNA Vaccines , RNA, Small Interfering/genetics
3.
Anal Chem ; 94(11): 4677-4685, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35254048

ABSTRACT

Messenger RNA vaccines have come into the spotlight as a promising and adaptive alternative to conventional vaccine approaches. The efficacy of mRNA vaccines relies on the ability of mRNA to reach the cytoplasm of cells, where it can be translated into proteins of interest, allowing it to trigger the immune response. However, unprotected mRNA is unstable and susceptible to degradation by exo- and endonucleases, and its negative charges are electrostatically repulsed by the anionic cell membranes. Therefore, mRNA needs a delivery system that protects the nucleic acid from degradation and allows it to enter into the cells. Lipid nanoparticles (LNPs) represent a nonviral leading vector for mRNA delivery. Physicochemical parameters of LNPs, including their size and their charge, directly impact their in vivo behavior and, therefore, their cellular internalization. In this work, Taylor dispersion analysis (TDA) was used as a new methodology for the characterization of the size and polydispersity of LNPs, and capillary electrophoresis (CE) was used for the determination of LNP global charge. The results obtained were compared with those obtained by dynamic light scattering (DLS) and laser Doppler electrophoresis (LDE).


Subject(s)
Nanoparticles , mRNA Vaccines , Liposomes , Nanoparticles/chemistry , RNA, Messenger/chemistry , RNA, Messenger/genetics , Vaccines, Synthetic
4.
J Chromatogr A ; 1667: 462838, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35149413

ABSTRACT

The development of combination vaccines is essential to reduce the number of injections, shorten vaccination schedules and increase vaccination coverage. Vaccine adjuvants are used to modulate and enhance the immune response induced by the antigens. To support the development of combination vaccines, the study of antigen-adjuvant interactions in the final vaccine formulations is required as interaction competitions may take place between the different antigens. In the present work, a capillary zone electrophoresis (CZE) methodology was firstly optimized on six model proteins, namely bovine serum albumin, ß-lactoglobulin, myoglobin, ribonuclease A, cytochrome C and lysozyme. A cationic dynamic coating (polybrene) and a zwitterionic amino acid additive (ß-alanine) in the background electrolyte were used to reduce the phenomena of protein adsorption on the inner wall of the capillary and thus optimize the separation efficiency of the proteins. The developed methodology was then used to separate three strains from inactivated polio virus, each strain being a whole virus composed of copies of 4 viral proteins and study their interaction with aluminum oxyhydroxide. The antigen-adjuvant interactions could be modulated by addition of phosphate ions playing the role of competitors for the poliovirus.


Subject(s)
Aluminum/chemistry , Poliovirus , Electrophoresis, Capillary , Poliovirus/isolation & purification
5.
Anal Chem ; 93(16): 6508-6515, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33861925

ABSTRACT

Vaccine adjuvants are immunostimulatory substances used to improve and modulate the immune response induced by antigens. A better understanding of the antigen-adjuvant interactions is necessary to develop future effective vaccine. In this study, Taylor dispersion analysis (TDA) was successfully implemented to characterize the interactions between a polymeric adjuvant (poly(acrylic acid), SPA09) and a vaccine antigen in development for the treatment of Staphylococcus aureus. TDA allowed one to rapidly determine both (i) the size of the antigen-adjuvant complexes under physiological conditions and (ii) the percentage of free antigen in the adjuvant/antigen mixture at equilibrium and finally get the interaction parameters (stoichiometry and binding constant). The complex sizes obtained by TDA were compared to the results obtained by transmission electron microscopy, and the binding parameters were compared to results previously obtained by frontal analysis continuous capillary electrophoresis.


Subject(s)
Adjuvants, Immunologic , Antigens , Vaccines , Electrophoresis, Capillary
6.
Biomacromolecules ; 21(8): 3364-3373, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32609507

ABSTRACT

Vaccine adjuvants are used to enhance the immune response induced by antigens that have insufficient immunostimulatory capabilities. The present work aims at developing a frontal analysis continuous capillary electrophoresis (FACCE) methodology for the study of antigen-adjuvant interactions in vaccine products. After method optimization using three cationic model proteins, namely lysozyme, cytochrome c, and ribonuclease A, FACCE was successfully implemented to quantify the free antigen and thus to determine the interaction parameters (stoichiometry and binding constant) between an anionic polymeric adjuvant (polyacrylic acid, SPA09) and a cationic vaccine antigen in development for the treatment for Staphylococcus aureus. The influence of the ionic strength of the medium on the interactions was investigated. A strong dependence of the binding parameters with the ionic strength was observed. The concentration of the polymeric adjuvant was also found to significantly modify the ionic strength of the formulation, the extent of which could be estimated and corrected.


Subject(s)
Vaccines , Adjuvants, Immunologic , Antigens , Electrophoresis, Capillary , Muramidase
7.
Ann Geophys ; 36(1): 13-24, 2018.
Article in English | MEDLINE | ID: mdl-29503514

ABSTRACT

The question of whether mesospheric OH(υ) rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(υ) rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-υ) vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(υ) rotational population distributions. Rapid OH(high-υ) + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-υ) rotational distributions. The effective rotational temperatures of mesospheric OH(υ) are found to deviate from local thermodynamic equilibrium for all observed vibrational levels.

8.
Anal Biochem ; 453: 22-8, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24608090

ABSTRACT

Current vaccines against Haemophilus influenzae type b (Hib) consist of the polyribosyl ribitol phosphate (PRP) capsular polysaccharide chemically conjugated to a carrier protein. Among the various biological and physical analyses to be performed on these vaccines, the determination of the molecular size of the polysaccharide preparations throughout the conjugation process is particularly relevant. Comparison of results from high-performance size exclusion chromatography (HPSEC) with those routinely obtained using conventional gel permeation chromatography (CGPC) methods highlights the correlation between the two methods for determining the values of the chromatographic distribution coefficient (KD) of native and activated polysaccharides. The resulting data showed that the KD value is sufficient to characterize these polysaccharides using an HPSEC method. However, additional molecular size parameters (i.e., molar mass and hydrodynamic radius) are necessary for a reliable characterization of the tetanus conjugate (PRP-T), certainly due to the lattice-like structure of the conjugate. In practice, an absolute detection system in HPSEC composed of a low-angle light scattering detector, a viscometer, and a refractive index (RI) detector was used. As demonstrated, these HPSEC methods are rapid, accurate, and reproducible for the polysaccharides and their glycoconjugates and provide a relevant and more informative alternative to the current CGPC methods.


Subject(s)
Chromatography, Gel/methods , Glycoconjugates/chemistry , Haemophilus influenzae type b/chemistry , Polysaccharides/chemistry , Carbohydrate Conformation , Chromatography, Gel/standards , Chromatography, High Pressure Liquid , Particle Size
9.
J Biol Chem ; 285(26): 19874-83, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20421293

ABSTRACT

The lipooligosaccharide (LOS) of immunotype L11 is unique within serogroup A meningococci. In order to resolve its molecular structure, we conducted LOS genotyping by PCR analysis of genes responsible for alpha-chain sugar addition (lgtA, -B, -C, -E, -H, and -F) and inner core substituents (lgtG, lpt-3, and lpt-6). For this study, we selected seven strains belonging to subgroup III, a major clonal complex responsible for meningococcal meningitis epidemics in Africa. In addition, we sequenced the homopolymeric tract regions of three phase-variable genes (lgtA, lgtG, and lot-3) to predict gene functionality. The fine structure of the L11 LOS of each strain was determined using composition and glycosyl linkage analyses, NMR, and mass spectrometry. The masses of the dephosphorylated oligosaccharides were consistent with an oligosaccharide composed of two hexoses, one N-acetyl-hexosamine, two heptoses, and one KDO, as proposed previously. The molar composition of LOS showed two glucose residues to be present, in agreement with lgtH sequence prediction. Despite phosphoethanolaminetransferase genes lpt-3 and lpt-6 being present in all seven Neisseria meningitidis strains, phosphoethanolamine (PEtn) was found at both O-3 and O-6 of HepII among the three ST-5 strains, whereas among the four ST-7 strains, only one PEtn was found and located at O-3 of the HepII. The L11 LOS was found to be O-acetylated, as was indicated by the presence of the lot-3 gene being in-frame in all of the seven N. meningitidis strains. To our knowledge, these studies represent the first full genetic and structural characterization of the L11 LOS of N. meningitidis. These investigations also suggest the presence of further regulatory mechanisms affecting LOS structure microheterogeneity in N. meningitidis related to PEtn decoration of the inner core.


Subject(s)
Lipopolysaccharides/biosynthesis , Lipopolysaccharides/chemistry , Neisseria meningitidis, Serogroup A/genetics , Neisseria meningitidis, Serogroup A/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Carbohydrate Sequence , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Electrophoresis, Polyacrylamide Gel , Gas Chromatography-Mass Spectrometry , Glycosylation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Magnetic Resonance Spectroscopy , Meningitis, Meningococcal/microbiology , Molecular Sequence Data , Molecular Structure , Monosaccharides/analysis , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Neisseria meningitidis, Serogroup A/classification , Sequence Analysis, DNA , Serotyping , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
Environ Sci Technol ; 43(24): 9294-9, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19924898

ABSTRACT

This paper reports the development of an in situ continuous emission monitor (CEM) for measuring elemental mercury (Hg(0)) concentration in the exhaust stream of coal-fired power plants. The instrument is based on the ultraviolet atomic absorption of a mercury lamp emission line by elemental mercury and a light-emitting diode (LED) background correction system. This approach allows an in situ measurement since the absorption of other species such as SO(2) can be removed to monitor the Hg(0) contribution only. Proof of concept was established through a laboratory-based investigation, and a limit of detection, [Hg(0)](min), of 2 microg/m(3) was measured for a 1-min averaged sample and an absorption path length of 49 cm. [Hg(0)](min) is anticipated to be better than 0.2 microg/m(3) across a 7 m diameter stack. Finally, the apparatus was field-tested in a 230 MW coal-fired power plant. The operability of the measurement in real conditions was demonstrated, leading to the first Hg(0) concentration values recorded by the in situ CEM. Comparison with an accepted standard method is required for validation.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Mercury/analysis , Absorption , Coal , Environmental Monitoring/methods , Limit of Detection , Power Plants , Sulfates/chemistry
11.
J Phys Chem A ; 111(30): 6959-66, 2007 Aug 02.
Article in English | MEDLINE | ID: mdl-17608391

ABSTRACT

Absolute absorption cross sections of the absorption spectrum of the 2nu1 band of the HO2 radical in the near-IR region were measured by continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled to laser photolysis in the wavelength range 6604-6696 cm(-1) with a resolution better than 0.003 cm(-1). Absolute absorption cross sections were obtained by measuring the decay of the HO2 self-reaction, and they are given for the 100 most intense lines. The most important absorption feature in this wavelength range was found at 6638.20 cm(-1), exhibiting an absorption cross section of sigma = 2.72 x 10(-19) cm2 at 50 Torr He. Using this absorption line, we obtain a detection limit for the HO2 radical at 50 Torr of 6.5 x 10(10) cm(-3).

SELECTION OF CITATIONS
SEARCH DETAIL
...