Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syndromol ; 1(3): 99-112, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21031079

ABSTRACT

The etiology of non-syndromic hydrocephalus is poorly understood. Via positional cloning in a consanguineous family with autosomal recessive hydrocephalus we have now identified a homozygous splice site mutation in the CCDC88C gene as a novel cause of a complex hydrocephalic brain malformation. The only living patient showed normal psychomotor development at the age of 3 years and 3 months and her deceased aunt, who was assumed to suffer from the same condition, had mild mental retardation. The mutation in the affected patients, a homozygous substitution in the donor splice site of intron 29, resulted in a shorter transcript due to exclusion of exon 29 and loss of functional protein, as shown by Western blotting (p.S1591HfsX7). In normal human tissue panels, we found CCDC88C ubiquitously expressed, but most prominently in the fetal brain, especially in pons and cerebellum, while expression in the adult brain appeared to be restricted to cortex and medulla oblongata. CCDC88C encodes DAPLE (HkRP2), a Hook-related protein with a binding domain for the central Wnt signalling pathway protein Dishevelled. Targeted quantitative RT-PCR and expression profiling of 84 genes from the Wnt signalling pathway in peripheral blood from the index patient and her healthy mother revealed increased mRNA levels of CCDC88C indicating transcriptional upregulation. Due to loss of CCDC88C function ß-catenin (CTNNB1) and the downstream target LEF1 showed increased mRNA levels in the patient, but many genes from the Wnt pathway and transcriptional target genes showed reduced expression, which might be explained by a complex negative feedback loop. We have thus identified a further essential component of the Wnt signalling pathway in human brain development.

2.
J Med Genet ; 46(11): 736-44, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19525279

ABSTRACT

BACKGROUND: Psoriasis is a genetically complex, chronic inflammatory skin disease. The authors have previously identified a susceptibility locus on chromosome 19p13 (PSORS6). METHODS AND RESULTS: In a follow-up linkage disequilibrium (LD) study in an independent family based cohort, the authors found evidence for association to a newly discovered microsatellite at this locus (D19SPS21, p<5.3x10(-5)). An LD based association scan in 300 trios revealed association to several single, single nucleotide polymorphisms (SNPs) in one LD block. When the authors stratified this cohort for carrying the PSORS1 risk allele at the HLA-C locus, evidence for association became much stronger at single SNP and haplotype levels (p values between 1.0x10(-4) and 8.0x10(-4)). In a replication study of 1114 patients and 937 control individuals, evidence for association was also observed after stratification to the PSORS1 risk allele. In both study groups, logistic regression showed evidence for interaction between the risk alleles at PSORS1 and PSORS6. Best p values for rs12459358 in both study groups remained significant after correction for multiple testing. The associated LD block did not comprise any known genes. Interestingly, an adjacent gene, MUC16, coding for a large glycosylated protein expressed in epithelia and of unknown function, could be shown to be also expressed in tissues relevant for pathogenesis of psoriasis such as skin and thymus. Immunohistochemical analyses of skin revealed focal staining for MUC16 in suprabasal epidermal cells. Further functional studies are required to clarify its potential role in psoriasis and identify the causal variant(s) at this locus. CONCLUSION: The data establish PSORS6 as a confirmed psoriasis susceptibility locus showing interaction with PSORS1.


Subject(s)
Proteins/genetics , Psoriasis/genetics , Adolescent , Adult , Age of Onset , CA-125 Antigen/metabolism , Chi-Square Distribution , Gene Frequency , Genetic Predisposition to Disease , Haplotypes , Humans , Immunohistochemistry , Linkage Disequilibrium , Male , Membrane Proteins/metabolism , Microsatellite Repeats , Middle Aged , Proteins/metabolism
3.
Am J Hum Genet ; 79(6): 1105-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17186469

ABSTRACT

Anonychia is an autosomal recessive disorder characterized by the congenital absence of finger- and toenails. In a large German nonconsanguineous family with four affected and five unaffected siblings with isolated total congenital anonychia, we performed genomewide mapping and showed linkage to 20p13. Analysis of the RSPO4 gene within this interval revealed a frameshift and a nonconservative missense mutation in exon 2 affecting the highly conserved first furin-like cysteine-rich domain. Both mutations were not present among controls and were shown to segregate with the disease phenotype. RSPO4 is a member of the recently described R-spondin family of secreted proteins that play a major role in activating the Wnt/ beta -catenin signaling pathway. Wnt signaling is evolutionarily conserved and plays a pivotal role in embryonic development, growth regulation of multiple tissues, and cancer development. Our findings add to the increasing body of evidence indicating that mesenchymal-epithelial interactions are crucial in nail development and put anonychia on the growing list of congenital malformation syndromes caused by Wnt-signaling-pathway defects. To the best of our knowledge, this is the first gene known to be responsible for an isolated, nonsyndromic nail disorder.


Subject(s)
Mutation , Nails, Malformed/genetics , Thrombospondins/genetics , Adult , Amino Acid Sequence , Chromosomes, Human, Pair 20 , Genetic Linkage , Humans , Middle Aged , Molecular Sequence Data , Nails, Malformed/diagnostic imaging , Pedigree , Protein Structure, Tertiary , Radiography , Signal Transduction , Thrombospondins/metabolism , Wnt Proteins/metabolism
4.
J Med Genet ; 42(11): 871-6, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15831592

ABSTRACT

INTRODUCTION: Clinical variability associated with the common 22q11.2 microdeletion is well known, and has led to a broad application of FISH diagnostics with probes for loci TUPLE1 or D22S75 (N25), although, rarely reported atypical deletions associated with the same phenotypic spectrum would not be discovered by these probes. As most types of 22q11.2 deletions occur between low copy repeats within the region (LCR22), we assumed that atypical deletions should be more common than has been reported. To address this question and the possibility of a deletion size related genotype-phenotype correlation, we systematically assessed the frequency of typical and atypical 22q11.2 deletions in a large cohort of patients. METHODS: We used a set of 10 fluorescent in situ hybridisation (FISH) DNA probes, capable of detecting all reported and hypothetical deletions between the LCR22, and analysed 350 patients. Deletion sizes in atypical deletions were established by use of further FISH probes. Frequency of certain atypical deletions was analysed in controls by FISH and quantitative PCR. RESULTS: Patients with conotruncal heart defects (ctCHD) and with typical VCFS phenotype showed the common 3 Mb or nested 1.5 Mb deletions (in 18.5% and 78.6%, respectively), but no atypical deletion, while 5% (3/63) of patients with a mildly suggestive, atypical phenotype showed atypical distal deletions, which were not detected in patients with mental retardation of unknown origin or in healthy controls. DISCUSSION: These statistically significant differences demonstrate that atypical distal 22q11.2 deletions are very uncommon in patients with ctCHDs, while atypical congenital heart defects and mild dysmorphism are recognisable feature of atypical distal deletions. Further phenotype-genotype analysis disclosed association of significant developmental delay with the distal part of the common deletion region, and choanal atresia and atypical CHDs with the adjacent distal deletion region.


Subject(s)
Chromosomes, Human, Pair 22 , Gene Deletion , Cohort Studies , Facies , Female , Genotype , Humans , In Situ Hybridization, Fluorescence , Intellectual Disability/genetics , Male , Models, Genetic , Oligonucleotide Probes/genetics , Phenotype , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...