Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31649093

ABSTRACT

The type strain Raoultella electrica 1GB (DSM 102253T) was isolated from anodic biofilms of glucose-fed microbial fuel cells. The fully assembled, closed, circular 5.27-Mb genome and corresponding 0.52-Mb plasmid DNA sequences were elucidated. Potential electron transfer and pathogenicity mechanisms were deduced.

2.
J Neurovirol ; 9(4): 465-76, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12907391

ABSTRACT

It is widely accepted that human immunodeficiency virus (HIV) invades the central nervous system (CNS) shortly after peripheral infection to establish a persistent infection of tissue-resident microglial cells. To what extent this early CNS infection is of pathogenic relevance is a matter of discussion. It is conceivable, however, that infected microglia releases virus variants of enhanced neurotropism and/or neurovirulence compared to peripheral isolates. Moreover, microglial variants may exhibit high resistance to antiviral therapeutics that poorly penetrate into brain tissue. The molecular basis of these biological properties is suspected to be associated with specific sequences in the viral env gene, particularly within the V3 loop. Therefore, we analyzed in the animal model of feline immunodeficiency virus (FIV) infection of cats lentiviral V3 sequences in highly purified microglial cells and blood from acutely infected animals. Compared to the inoculated virus, nucleotide sequence alterations in serum samples were rarely detectable, if at all. In contrast, up to 19 nucleotide exchanges could be identified within FIV V3 from microglia, resulting in a mutation frequency of up to 14.5% with respect to the deduced amino acid sequence. These findings suggest selection of specific virus variants by brain-resident target cells that might have implications for antiretroviral drug design.


Subject(s)
Brain Diseases/virology , Feline Acquired Immunodeficiency Syndrome/virology , Immunodeficiency Virus, Feline/growth & development , Immunodeficiency Virus, Feline/genetics , Microglia/virology , Amino Acid Sequence , Animals , Base Sequence , Brain Diseases/immunology , Cats , Feline Acquired Immunodeficiency Syndrome/immunology , Glycoproteins/genetics , Immunodeficiency Virus, Feline/pathogenicity , Molecular Sequence Data , Phylogeny , Polymorphism, Single-Stranded Conformational , Viral Envelope Proteins/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...