Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10594, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719953

ABSTRACT

Colorectal liver metastases (CRLM) are the predominant factor limiting survival in patients with colorectal cancer and liver resection with complete tumor removal is the best treatment option for these patients. This study examines the predictive ability of three-dimensional lung volumetry (3DLV) based on preoperative computerized tomography (CT), to predict postoperative pulmonary complications in patients undergoing major liver resection for CRLM. Patients undergoing major curative liver resection for CRLM between 2010 and 2021 with a preoperative CT scan of the thorax within 6 weeks of surgery, were included. Total lung volume (TLV) was calculated using volumetry software 3D-Slicer version 4.11.20210226 including Chest Imaging Platform extension ( http://www.slicer.org ). The area under the curve (AUC) of a receiver-operating characteristic analysis was used to define a cut-off value of TLV, for predicting the occurrence of postoperative respiratory complications. Differences between patients with TLV below and above the cut-off were examined with Chi-square or Fisher's exact test and Mann-Whitney U tests and logistic regression was used to determine independent risk factors for the development of respiratory complications. A total of 123 patients were included, of which 35 (29%) developed respiratory complications. A predictive ability of TLV regarding respiratory complications was shown (AUC 0.62, p = 0.036) and a cut-off value of 4500 cm3 was defined. Patients with TLV < 4500 cm3 were shown to suffer from significantly higher rates of respiratory complications (44% vs. 21%, p = 0.007) compared to the rest. Logistic regression analysis identified TLV < 4500 cm3 as an independent predictor for the occurrence of respiratory complications (odds ratio 3.777, 95% confidence intervals 1.488-9.588, p = 0.005). Preoperative 3DLV is a viable technique for prediction of postoperative pulmonary complications in patients undergoing major liver resection for CRLM. More studies in larger cohorts are necessary to further evaluate this technique.


Subject(s)
Colorectal Neoplasms , Hepatectomy , Liver Neoplasms , Postoperative Complications , Tomography, X-Ray Computed , Humans , Female , Male , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Middle Aged , Liver Neoplasms/surgery , Liver Neoplasms/secondary , Aged , Hepatectomy/adverse effects , Hepatectomy/methods , Postoperative Complications/etiology , Lung/pathology , Lung/diagnostic imaging , Lung/surgery , Retrospective Studies , Imaging, Three-Dimensional , Lung Volume Measurements , Risk Factors , Preoperative Period
2.
Mol Metab ; : 101963, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821174

ABSTRACT

OBJECTIVE: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor regulating xenobiotic responses as well as physiological metabolism. Dietary AhR ligands activate the AhR signaling axis, whereas AhR activation is negatively regulated by the AhR repressor (AhRR). While AhR-deficient mice are known to be resistant to diet-induced obesity (DIO), the influence of the AhRR on DIO has not been assessed so far. METHODS: In this study, we analyzed AhRR-/- mice and mice with a conditional deletion of either AhRR or AhR in myeloid cells under conditions of DIO and after supplementation of dietary AhR ligands. Moreover, macrophage metabolism was assessed using Seahorse Mito Stress Test and ROS assays as well as transcriptomic analysis. RESULTS: We demonstrate that global AhRR deficiency leads to a robust, but not as profound protection from DIO and hepatosteatosis as AhR deficiency. Under conditions of DIO, AhRR-/- mice did not accumulate TCA cycle intermediates in the circulation in contrast to wild-type (WT) mice, indicating protection from metabolic dysfunction. This effect could be mimicked by dietary supplementation of AhR ligands in WT mice. Because of the predominant expression of the AhRR in myeloid cells, AhRR-deficient macrophages were analyzed for changes in metabolism and showed major metabolic alterations regarding oxidative phosphorylation and mitochondrial activity. Unbiased transcriptomic analysis revealed increased expression of genes involved in de novo lipogenesis and mitochondrial biogenesis. Mice with a genetic deficiency of the AhRR in myeloid cells did not show alterations in weight gain after high fat diet (HFD) but demonstrated ameliorated liver damage compared to control mice. Further, deficiency of the AhR in myeloid cells also did not affect weight gain but led to enhanced liver damage and adipose tissue fibrosis compared to controls. CONCLUSIONS: AhRR-deficient mice are resistant to diet-induced metabolic syndrome. Although conditional ablation of either the AhR or AhRR in myeloid cells did not recapitulate the phenotype of the global knockout, our findings suggest that enhanced AhR signaling in myeloid cells deficient for AhRR protects from diet-induced liver damage and fibrosis, whereas myeloid cell-specific AhR deficiency is detrimental.

3.
Nat Metab ; 5(4): 699-709, 2023 04.
Article in English | MEDLINE | ID: mdl-37012495

ABSTRACT

Triglyceride cycling is the process of continuous degradation and re-synthesis of triglyceride in cellular stores. We show in 3T3-L1 adipocytes that triglycerides are subject to rapid turnover and re-arrangement of fatty acids with an estimated half-life of 2-4 h. We develop a tracing technology that can simultaneously and quantitatively follow the metabolism of multiple fatty acids to study the triglyceride futile substrate cycle directly and with molecular species resolution. Our approach is based on alkyne fatty acid tracers and mass spectrometry. The triglyceride cycling is connected to modification of released fatty acids by elongation and desaturation. Through cycling and modification, saturated fatty acids are slowly converted to monounsaturated fatty acids, and linoleic acid to arachidonic acid. We conclude that triglyceride cycling renders stored fatty acids accessible for metabolic alteration. The overall process facilitates cellular adjustments to the stored fatty acid pool to meet changing needs of the cell.


Subject(s)
Adipocytes , Fatty Acids , Fatty Acids/metabolism , Triglycerides/metabolism , Adipocytes/metabolism
4.
Front Immunol ; 13: 917232, 2022.
Article in English | MEDLINE | ID: mdl-35979364

ABSTRACT

Despite its high prevalence, the cellular and molecular mechanisms of chronic obstructive pulmonary disease (COPD) are far from being understood. Here, we determine disease-related changes in cellular and molecular compositions within the alveolar space and peripheral blood of a cohort of COPD patients and controls. Myeloid cells were the largest cellular compartment in the alveolar space with invading monocytes and proliferating macrophages elevated in COPD. Modeling cell-to-cell communication, signaling pathway usage, and transcription factor binding predicts TGF-ß1 to be a major upstream regulator of transcriptional changes in alveolar macrophages of COPD patients. Functionally, macrophages in COPD showed reduced antigen presentation capacity, accumulation of cholesteryl ester, reduced cellular chemotaxis, and mitochondrial dysfunction, reminiscent of impaired immune activation.


Subject(s)
Macrophages, Alveolar , Pulmonary Disease, Chronic Obstructive , Chemotaxis/physiology , Humans , Macrophages/metabolism , Monocytes/metabolism
5.
Front Aging ; 3: 800153, 2022.
Article in English | MEDLINE | ID: mdl-35821816

ABSTRACT

The human LIPA gene encodes for the enzyme lysosomal acid lipase, which hydrolyzes cholesteryl ester and triacylglycerol. Lysosomal acid lipase deficiency results in Wolman disease and cholesteryl ester storage disease. The Drosophila genome encodes for two LIPA orthologs, Magro and Lipase 3. Magro is a gut lipase that hydrolyzes triacylglycerides, while Lipase 3 lacks characterization based on mutant phenotypes. We found previously that Lipase 3 transcription is highly induced in mutants with defects in peroxisome biogenesis, but the conditions that allow a similar induction in wildtypic flies are not known. Here we show that Lipase 3 is drastically upregulated in starved larvae and starved female flies, as well as in aged male flies. We generated a lipase 3 mutant that shows sex-specific starvation resistance and a trend to lifespan extension. Using lipidomics, we demonstrate that Lipase 3 mutants accumulate phosphatidylinositol, but neither triacylglycerol nor diacylglycerol. Our study suggests that, in contrast to its mammalian homolog LIPA, Lipase 3 is a putative phospholipase that is upregulated under extreme conditions like prolonged nutrient deprivation and aging.

6.
Sci Adv ; 8(29): eabo0155, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35867795

ABSTRACT

Dynamic contacts are formed between endoplasmic reticulum (ER) and mitochondria that enable the exchange of calcium and phospholipids. Disturbed contacts between ER and mitochondria impair mitochondrial dynamics and are a molecular hallmark of Parkinson's disease, which is also characterized by impaired complex I activity and dopaminergic neuron degeneration. Here, we analyzed the role of cysteine-rich with EGF-like domain (Creld), a poorly characterized risk gene for Parkinson's disease, in the regulation of mitochondrial dynamics and function. We found that loss of Creld leads to mitochondrial hyperfusion and reduced ROS signaling in Drosophila melanogaster, Xenopus tropicalis, and human cells. Creld fly mutants show differences in ER-mitochondria contacts and reduced respiratory complex I activity. The resulting low-hydrogen peroxide levels are linked to disturbed neuronal activity and lead to impaired locomotion, but not neurodegeneration, in Creld mutants. We conclude that Creld regulates ER-mitochondria communication and thereby hydrogen peroxide formation, which is required for normal neuron function.


Subject(s)
Drosophila melanogaster , Parkinson Disease , Animals , Dopaminergic Neurons/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Endoplasmic Reticulum/metabolism , Humans , Hydrogen Peroxide/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism
7.
Front Mol Biosci ; 9: 880559, 2022.
Article in English | MEDLINE | ID: mdl-35669564

ABSTRACT

Lipid tracing studies are a key method to gain a better understanding of the complex metabolic network lipids are involved in. In recent years, alkyne lipid tracers and mass spectrometry have been developed as powerful tools for such studies. This study aims to review the present standing of the underlying technique, highlight major findings the strategy allowed for, summarize its advantages, and discuss some limitations. In addition, an outlook on future developments is given.

8.
J Lipid Res ; 63(4): 100188, 2022 04.
Article in English | MEDLINE | ID: mdl-35247455

ABSTRACT

Fatty acid beta-oxidation is a key process in mammalian lipid catabolism. Disturbance of this process results in severe clinical symptoms, including dysfunction of the liver, a major beta-oxidizing tissue. For a thorough understanding of this process, a comprehensive analysis of involved fatty acid and acyl-carnitine intermediates is desired, but capable methods are lacking. Here, we introduce oxaalkyne and alkyne fatty acids as novel tracers to study the beta-oxidation of long- and medium-chain fatty acids in liver lysates and primary hepatocytes. Combining these new tracer tools with highly sensitive chromatography and mass spectrometry analyses, this study confirms differences in metabolic handling of fatty acids of different chain length. Unlike longer chains, we found that medium-chain fatty acids that were activated inside or outside of mitochondria by different acyl-CoA synthetases could enter mitochondria in the form of free fatty acids or as carnitine esters. Upon mitochondrial beta-oxidation, shortened acyl-carnitine metabolites were then produced and released from mitochondria. In addition, we show that hepatocytes ultimately also secreted these shortened acyl chains into their surroundings. Furthermore, when mitochondrial beta-oxidation was hindered, we show that peroxisomal beta-oxidation likely acts as a salvage pathway, thereby maintaining the levels of shortened fatty acid secretion. Taken together, we conclude that this new method based on oxaalkyne and alkyne fatty acids allows for metabolic tracing of the beta-oxidation pathway in tissue lysate and in living cells with unique coverage of metabolic intermediates and at unprecedented detail.


Subject(s)
Alkynes , Fatty Acids , Animals , Carnitine/metabolism , Fatty Acids/metabolism , Liver/metabolism , Mammals/metabolism , Mitochondria/metabolism , Oxidation-Reduction
9.
ERJ Open Res ; 7(3)2021 Jul.
Article in English | MEDLINE | ID: mdl-34527724

ABSTRACT

BACKGROUND: Immune cells play a major role in the pathogenesis of COPD. Changes in the distribution and cellular functions of major immune cells, such as alveolar macrophages (AMs) and neutrophils are well known; however, their transcriptional reprogramming and contribution to the pathophysiology of COPD are still not fully understood. METHOD: To determine changes in transcriptional reprogramming and lipid metabolism in the major immune cell type within bronchoalveolar lavage fluid, we analysed whole transcriptomes and lipidomes of sorted CD45+Lin-HLA-DR+CD66b-Autofluorescencehi AMs from controls and COPD patients. RESULTS: We observed global transcriptional reprogramming featuring a spectrum of activation states, including pro- and anti-inflammatory signatures. We further detected significant changes between COPD patients and controls in genes involved in lipid metabolism, such as fatty acid biosynthesis in GOLD2 patients. Based on these findings, assessment of a total of 202 lipid species in sorted AMs revealed changes of cholesteryl esters, monoacylglycerols and phospholipids in a disease grade-dependent manner. CONCLUSIONS: Transcriptome and lipidome profiling of COPD AMs revealed GOLD grade-dependent changes, such as in cholesterol metabolism and interferon-α and γ responses.

10.
FASEB J ; 35(10): e21939, 2021 10.
Article in English | MEDLINE | ID: mdl-34549824

ABSTRACT

The unfolded protein response (UPR) is associated with hepatic metabolic function, yet it is not well understood how endoplasmic reticulum (ER) disturbance might influence metabolic homeostasis. Here, we describe the physiological function of Cysteine-rich with EGF-like domains 2 (Creld2), previously characterized as a downstream target of the ER-stress signal transducer Atf6. To this end, we generated Creld2-deficient mice and induced UPR by injection of tunicamycin. Creld2 augments protein folding and creates an interlink between the UPR axes through its interaction with proteins involved in the cellular stress response. Thereby, Creld2 promotes tolerance to ER stress and recovery from acute stress. Creld2-deficiency leads to a dysregulated UPR and causes the development of hepatic steatosis during ER stress conditions. Moreover, Creld2-dependent enhancement of the UPR assists in the regulation of energy expenditure. Furthermore, we observed a sex dimorphism in human and mouse livers with only male patients showing an accumulation of CRELD2 protein during the progression from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and only male Creld2-deficient mice developing hepatic steatosis upon aging. These results reveal a Creld2 function at the intersection between UPR and metabolic homeostasis and suggest a mechanism in which chronic ER stress underlies fatty liver disease in males.


Subject(s)
Cell Adhesion Molecules/metabolism , Extracellular Matrix Proteins/metabolism , Homeostasis , Liver/metabolism , Unfolded Protein Response , Aging , Animals , Disease Progression , Endoplasmic Reticulum Stress , Fatty Liver , Humans , Male , Mice , Non-alcoholic Fatty Liver Disease
11.
J Lipid Res ; 62: 100022, 2021.
Article in English | MEDLINE | ID: mdl-33453218

ABSTRACT

Phospholipids with a choline head group are an abundant component of cellular membranes and are involved in many important biological functions. For studies on the cell biology and metabolism of these lipids, traceable analogues where propargylcholine replaces the choline head group have proven useful. We present a novel method to analyze propargylcholine phospholipids by MS. The routine employs 1-radyl-2-lyso-sn-glycero-3-phosphopropargylcholines as labeled lysophosphatidylcholine precursors, which upon cellular conversion direct the traceable tag with superb specificity and efficiency to the primary target lipid class. Using azidopalmitate as a click-chemistry reporter, we introduce a highly specific, sensitive, and robust MS detection procedure for the propargylcholine phospholipids. In a first study, we apply the new technique to investigate choline phospholipid metabolism in brain endothelial cells. These experiments reveal differences in the metabolism of phosphatidylcholine and its pendant, ether phosphatidylcholine. The novel method described here opens a new, quantitative, and detailed view on propargylcholine phospholipid metabolism and will greatly facilitate future studies on choline phospholipid metabolism.


Subject(s)
Endothelial Cells
12.
Autophagy ; 17(8): 1947-1961, 2021 08.
Article in English | MEDLINE | ID: mdl-32835606

ABSTRACT

1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids of clinical relevance as they are elevated in plasma of patients suffering from hereditary sensory and autonomic neuropathy (HSAN1) or type 2 diabetes. Their neurotoxicity is described best but they inflict damage to various cell types by an uncertain pathomechanism. Using mouse embryonic fibroblasts and an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, we here study the impact of deoxySLs on macroautophagy/autophagy, the regulated degradation of dysfunctional or expendable cellular components. We find that deoxySLs induce autophagosome and lysosome accumulation indicative of an increase in autophagic flux. The autophagosomal machinery targets damaged mitochondria that have accumulated N-acylated doxSA metabolites, presumably deoxyceramide and deoxydihydroceramide, and show aberrant swelling and tubule formation. Autophagosomes and lysosomes also interact with cellular lipid aggregates and crystals that occur upon cellular uptake and N-acylation of monomeric doxSA. As crystals entering the lysophagosomal apparatus in phagocytes are known to trigger the NLRP3 inflammasome, we also treated macrophages with doxSA. We demonstrate the activation of the NLRP3 inflammasome by doxSLs, prompting the release of IL1B from primary macrophages. Taken together, our data establish an impact of doxSLs on autophagy and link doxSL pathophysiology to inflammation and the innate immune system.Abbreviations: alkyne-doxSA: (2S,3R)-2-aminooctadec-17yn-3-ol; alkyne-SA: (2S,3R)-2- aminooctadec-17yn-1,3-diol; aSA: alkyne-sphinganine; ASTM-BODIPY: azido-sulfo-tetramethyl-BODIPY; CerS: ceramide synthase; CMR: clonal macrophage reporter; deoxySLs: 1-deoxysphingolipids; dox(DH)Cer: 1-deoxydihydroceramide; doxCer: 1-deoxyceramide; doxSA: 1-deoxysphinganine; FB1: fumonisin B1; HSAN1: hereditary sensory and autonomic neuropathy type 1; LC3: MAP1LC3A and MAP1LC3B; LPS: lipopolysaccharide; MEF: mouse embryonal fibroblasts; MS: mass spectrometry; N3635P: azido-STAR635P; N3Cy3: azido-cyanine 3; N3picCy3: azido-picolylcyanine 3; NLRP3: NOD-like receptor pyrin domain containing protein 3; P4HB: prolyl 4-hydroxylase subunit beta; PINK1: PTEN induced putative kinase 1; PYCARD/ASC: PYD and CARD domain containing; SPTLC1: serine palmitoyltransferase long chain base subunit 1; SQSTM1: sequestosome 1; TLC: thin layer chromatography.


Subject(s)
Autophagosomes/drug effects , Inflammasomes/drug effects , Lysosomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Sphingolipids/pharmacology , Animals , Autophagosomes/metabolism , Autophagy/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Lysosomes/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
13.
Mol Metab ; 45: 101150, 2021 03.
Article in English | MEDLINE | ID: mdl-33359403

ABSTRACT

OBJECTIVE: Medium-chain fatty acids (MCFAs) play an increasing role in human nutrition. In the liver, one fraction is used for synthesis of MCFA-containing triacylglycerol (MCFA-TG), and the rest is used for oxidative energy production or ketogenesis. We investigated which enzymes catalyse the synthesis of MCFA-TG and how inhibition of MCFA-TG synthesis or fatty acid (FA) oxidation influences the metabolic fate of the MCFAs. METHODS: FA metabolism was followed by time-resolved tracing of alkyne-labelled FAs in freshly isolated mouse hepatocytes. Quantitative data were obtained by mass spectrometry of several hundred labelled lipid species. Wild-type hepatocytes and cells from diacylglycerol acyltransferase (DGAT)1-/- mice were treated with inhibitors against DGAT1, DGAT2, or FA ß-oxidation. RESULTS: Inhibition or deletion of DGAT1 resulted in a reduction of MCFA-TG synthesis by 70%, while long-chain (LC)FA-TG synthesis was reduced by 20%. In contrast, DGAT2 inhibition increased MCFA-TG formation by 50%, while LCFA-TG synthesis was reduced by 5-25%. Inhibition of ß-oxidation by the specific inhibitor teglicar strongly increased MCFA-TG synthesis. In contrast, the widely used ß-oxidation inhibitor etomoxir blocked MCFA-TG synthesis, phenocopying DGAT1 inhibition. CONCLUSIONS: DGAT1 is the major enzyme for hepatic MCFA-TG synthesis. Its loss can only partially be compensated by DGAT2. Specific inhibition of ß-oxidation leads to a compensatory increase in MCFA-TG synthesis, whereas etomoxir blocks both ß-oxidation and MCFA-TG synthesis, indicating a strong off-target effect on DGAT1.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/metabolism , Epoxy Compounds/pharmacology , Fatty Acids/metabolism , Liver/metabolism , Triglycerides/metabolism , Animals , Diacylglycerol O-Acyltransferase/genetics , Hepatocytes/metabolism , Lipid Metabolism , Lipogenesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction
14.
Sci Rep ; 10(1): 21104, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273595

ABSTRACT

Adipose tissue is an organized endocrine organ with important metabolic and immunological functions and immune cell-adipocyte crosstalk is known to drive various disease pathologies. Suitable 3D adipose tissue organoid models often lack resident immune cell populations and therefore require the addition of immune cells isolated from other organs. We have created the first 3D adipose tissue organoid model which could contain and maintain resident immune cell populations of the stromal vascular fraction (SVF) and proved to be effective in studying adipose tissue biology in a convenient manner. Macrophage and mast cell populations were successfully confirmed within our organoid model and were maintained in culture without the addition of growth factors. We demonstrated the suitability of our model for monitoring the lipidome during adipocyte differentiation in vitro and confirmed that this model reflects the physiological lipidome better than standard 2D cultures. In addition, we applied mass spectrometry-based lipidomics to track lipidomic changes in the lipidome upon dietary and immunomodulatory interventions. We conclude that this model represents a valuable tool for immune-metabolic research.


Subject(s)
Adipose Tissue/cytology , Organoids/cytology , Organoids/immunology , Animals , Diet , Imaging, Three-Dimensional , Insulin/pharmacology , Interleukin-4/pharmacology , Lipid Metabolism/drug effects , Lipidomics , Lipopolysaccharides/pharmacology , Male , Mass Spectrometry , Mice, Inbred C57BL , Organoids/drug effects , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Stromal Cells/cytology , Stromal Cells/drug effects
15.
Cells ; 9(10)2020 10 08.
Article in English | MEDLINE | ID: mdl-33050035

ABSTRACT

A high fat Western-style diet leads to hepatic steatosis that can progress to steatohepatitis and ultimately cirrhosis or liver cancer. The mechanism that leads to the development of steatosis upon nutritional overload is complex and only partially understood. Using click chemistry-based metabolic tracing and microscopy, we study the interaction between Kupffer cells and hepatocytes ex vivo. In the early phase of steatosis, hepatocytes alone do not display significant deviations in fatty acid metabolism. However, in co-cultures or supernatant transfer experiments, we show that tumor necrosis factor (TNF) secretion by Kupffer cells is necessary and sufficient to induce steatosis in hepatocytes, independent of the challenge of hepatocytes with elevated fatty acid levels. We further show that free fatty acid (FFA) or lipopolysaccharide are both able to trigger release of TNF from Kupffer cells. We conclude that Kupffer cells act as the primary sensor for both FFA overload and bacterial lipopolysaccharide, integrate these signals and transmit the information to the hepatocyte via TNF secretion. Hepatocytes react by alteration in lipid metabolism prominently leading to the accumulation of triacylglycerols (TAGs) in lipid droplets, a hallmark of steatosis.


Subject(s)
Fatty Acids, Nonesterified/metabolism , Hepatocytes/metabolism , Kupffer Cells/metabolism , Animals , Click Chemistry/methods , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/physiology , Fatty Liver/etiology , Fatty Liver/metabolism , Hepatocytes/physiology , Inflammation/metabolism , Kupffer Cells/physiology , Lipid Metabolism/physiology , Lipids/physiology , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Tumor Necrosis Factor-alpha
16.
J Immunother Cancer ; 8(2)2020 09.
Article in English | MEDLINE | ID: mdl-32943450

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment (TME) in non-medullary thyroid carcinoma (TC) and neuroblastoma (NB), being associated with a poor prognosis for patients. However, little is known about how tumors steer the specific metabolic phenotype and function of TAMs. METHODS: In a human coculture model, transcriptome, metabolome and lipidome analysis were performed on TC-induced and NB-induced macrophages. The metabolic shift was correlated to functional readouts, such as cytokine production and reactive oxygen species (ROS) production, including pharmacological inhibition of metabolic pathways. RESULTS: Based on transcriptome and metabolome analysis, we observed a strong upregulation of lipid biosynthesis pathways in TAMs. Subsequently, lipidome analysis revealed that tumor-induced macrophages have an increased total lipid content and enriched levels of intracellular lipids, especially phosphoglycerides and sphingomyelins. Strikingly, this metabolic shift in lipid synthesis contributes to their protumoral functional characteristics: blocking key enzymes of lipid biosynthesis in the tumor-induced macrophages reversed the increased inflammatory cytokines and the capacity to produce ROS, two well-known protumoral factors in the TME. CONCLUSIONS: Taken together, our data show that tumor cells can stimulate lipid biosynthesis in macrophages to induce protumoral cytokine and ROS responses and advocate lipid biosynthesis as a potential therapeutic target to reprogram the TME.


Subject(s)
Lipid Metabolism/physiology , Metabolomics/methods , Neoplasms/physiopathology , Tumor-Associated Macrophages/pathology , Humans , Neoplasms/pathology , Tumor Microenvironment
17.
Commun Biol ; 3(1): 372, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651434

ABSTRACT

Raman imaging has become an attractive technology in molecular biology because of its ability to detect multiple molecular components simultaneously without labeling. Two major limitations in accurately accounting for spectral features, viz., background removal and spectral unmixing, have been overcome by employing a modified and effective routine in multivariate curve resolution (MCR). With our improved strategy, we have spectrally isolated seven structurally specific biomolecules without any post-acquisition spectral treatments. Consequently, the isolated intensity profiles reflected concentrations of corresponding biomolecules with high statistical accuracy. Our study reveals the changes in the molecular composition of lipid droplets (LDs) inside HuH7 cells and its relation to the physiological state of the cell. Further, we show that the accurate separation of spectral components permits analysis of structural modification of molecules after cellular uptake. A detailed discussion is presented to highlight the potential of Raman spectroscopy with MCR in semi-quantitative molecular profiling of living cells.


Subject(s)
Lipid Droplets/chemistry , Liver/chemistry , Cells, Cultured , Cholesterol/analysis , Humans , Liver/cytology , Oleic Acid/analysis , Spectrum Analysis, Raman
18.
J Insect Physiol ; 126: 104090, 2020 10.
Article in English | MEDLINE | ID: mdl-32730782

ABSTRACT

Free or non-esterified fatty acids are the product of lipolysis of storage fat, i.e. triacylglyceroles. When the amount of fat exceeds the capacity of lipid-storing organs, free fatty acids affect and damage other non-lipid-storing organs. This process is termed lipotoxicity. Within a cell, free fatty acids can damage mitochondria, and lipotoxicity-induced mitochondrial damage has been associated recently with Peroxisomal Biogenesis Disorders. Drosophila melanogaster has a rising popularity as a model organism for metabolic diseases, but an optimized assay for measuring free fatty acids in Drosophila tissue samples is missing. Here we present a detailed protocol highlighting technical requirements and pitfalls to determine free fatty acids in samples of Drosophila tissue. The colorimetric assay allows the reproducible and cost-efficient measurement of free fatty acids in a 96 well plate format. We used our assay to determine changes in free fatty acid levels in different developmental stages and feeding conditions, and found that larvae and adults have different patterns of free fatty acid formation during starvation. Our assay is a valuable tool in the modeling of metabolic diseases with Drosophila melanogaster.


Subject(s)
Colorimetry/methods , Drosophila melanogaster/metabolism , Fatty Acids, Nonesterified/analysis , Animals , Fatty Acids/metabolism , Lipid Metabolism/physiology , Metabolic Diseases , Mitochondria/pathology , Models, Animal , Peroxisomal Disorders/etiology , Starvation
19.
Shock ; 54(6): 810-818, 2020 12.
Article in English | MEDLINE | ID: mdl-32554994

ABSTRACT

Adrenomedullin is a vasoactive peptide that improves endothelial barrier function in sepsis, but may also cause hypotension and organ failure. Treatment with a non-neutralizing monoclonal anti-adrenomedullin antibody showed improvement in murine sepsis models. We tested the effects of the humanized monoclonal anti-adrenomedullin antibody Adrecizumab in a porcine two-hit model of hemorrhagic and septic shock.In this randomized, blinded study 12 German Landrace pigs were bled to half of baseline mean arterial pressure for 45 min. Sepsis was induced using an Escherichia coli clot placed into the abdominal cavity 6 h after hemorrhagic shock. Animals received either 2 mg/kg BW anti-adrenomedullin antibody or vehicle solution immediately after sepsis induction. After 4 h, resuscitation was initiated using balanced crystalloids and noradrenalin to maintain a central venous pressure of 8 to 12 mm Hg, a mean arterial pressure ≥ 65 mm Hg, and a ScvO2 ≥70% for another 8 h. Hemodynamic parameters, laboratory parameters, and kidney histology were assessed.The amount of volume resuscitation was significantly lower and significantly less animals developed a septic shock in the antibody-treated group, compared with the vehicle group. Kidney histology showed significantly lower granulocytes in both cortex and medulla in antibody-treated animals, while the remaining four kidney measures (serum creatinine and urine output and cortical and medullary injury in histopathology) did not reach the significance levels. After induction of sepsis, plasma adrenomedullin increased immediately in both the groups, but increased quicker and more pronounced in the antibody group.In this two-hit shock model, treatment with an anti-adrenomedullin antibody significantly increased plasma adrenomedullin levels, while significantly less animals developed septic shock and renal granulocyte extravasation was significantly reduced. Thus, therapy with Adrecizumab may provide benefit in sepsis, and clinical investigation of this drug candidate is warranted.


Subject(s)
Antibodies, Monoclonal, Humanized , Kidney , Models, Biological , Sepsis , Swine Diseases , Animals , Adrenomedullin/blood , Antibodies, Monoclonal, Humanized/pharmacology , Disease Models, Animal , Kidney/injuries , Kidney/metabolism , Kidney/pathology , Sepsis/blood , Sepsis/drug therapy , Sepsis/pathology , Sepsis/veterinary , Swine , Swine Diseases/blood , Swine Diseases/drug therapy , Swine Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...