Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(15): 6454-6461, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35792810

ABSTRACT

A recent addition to the toolbox of super-resolution microscopy methods is fluorescence-lifetime single-molecule localization microscopy (FL-SMLM). The synergy of SMLM and fluorescence-lifetime imaging microscopy (FLIM) combines superior image resolution with lifetime information and can be realized using two complementary experimental approaches: confocal-laser scanning microscopy (CLSM) or wide-field microscopy. Here, we systematically and comprehensively compare these two novel FL-SMLM approaches in different spectral regions. For wide-field FL-SMLM, we use a commercial lifetime camera, and for CLSM-based FL-SMLM we employ a home-built system equipped with a rapid scan unit and a single-photon detector. We characterize the performances of the two systems in localizing single emitters in 3D by combining FL-SMLM with metal-induced energy transfer (MIET) for localization along the third dimension and in the lifetime-based multiplexed bioimaging using DNA-PAINT. Finally, we discuss advantages and disadvantages of wide-field and confocal FL-SMLM and provide practical advice on rational FL-SMLM experiment design.


Subject(s)
DNA , Single Molecule Imaging , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Nanotechnology , Single Molecule Imaging/methods
2.
Sci Adv ; 8(23): eabo2506, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35675401

ABSTRACT

Over the past two decades, super-resolution microscopy has seen a tremendous development in speed and resolution, but for most of its methods, there exists a remarkable gap between lateral and axial resolution, which is by a factor of 2 to 3 worse. One recently developed method to close this gap is metal-induced energy transfer (MIET) imaging, which achieves an axial resolution down to nanometers. It exploits the distance-dependent quenching of fluorescence when a fluorescent molecule is brought close to a metal surface. In the present manuscript, we combine the extreme axial resolution of MIET imaging with the extraordinary lateral resolution of single-molecule localization microscopy, in particular with direct stochastic optical reconstruction microscopy (dSTORM). This combination allows us to achieve isotropic three-dimensional super-resolution imaging of subcellular structures. Moreover, we used spectral demixing for implementing dual-color MIET-dSTORM that allows us to image and colocalize, in three dimensions, two different cellular structures simultaneously.

3.
Commun Biol ; 5(1): 38, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017652

ABSTRACT

DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution technique highly suitable for multi-target (multiplexing) bio-imaging. However, multiplexed imaging of cells is still challenging due to the dense and sticky environment inside a cell. Here, we combine fluorescence lifetime imaging microscopy (FLIM) with DNA-PAINT and use the lifetime information as a multiplexing parameter for targets identification. In contrast to Exchange-PAINT, fluorescence lifetime PAINT (FL-PAINT) can image multiple targets simultaneously and does not require any fluid exchange, thus leaving the sample undisturbed and making the use of flow chambers/microfluidic systems unnecessary. We demonstrate the potential of FL-PAINT by simultaneous imaging of up to three targets in a cell using both wide-field FLIM and 3D time-resolved confocal laser scanning microscopy (CLSM). FL-PAINT can be readily combined with other existing techniques of multiplexed imaging and is therefore a perfect candidate for high-throughput multi-target bio-imaging.


Subject(s)
DNA/chemistry , Microscopy, Fluorescence/methods , Molecular Imaging/methods , Nanotechnology/methods , DNA/analysis , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Microscopy, Confocal
4.
Front Bioinform ; 1: 740281, 2021.
Article in English | MEDLINE | ID: mdl-36303750

ABSTRACT

Fluorescence-lifetime single molecule localization microscopy (FL-SMLM) adds the lifetime dimension to the spatial super-resolution provided by SMLM. Independent of intensity and spectrum, this lifetime information can be used, for example, to quantify the energy transfer efficiency in Förster Resonance Energy Transfer (FRET) imaging, to probe the local environment with dyes that change their lifetime in an environment-sensitive manner, or to achieve image multiplexing by using dyes with different lifetimes. We present a thorough theoretical analysis of fluorescence-lifetime determination in the context of FL-SMLM and compare different lifetime-fitting approaches. In particular, we investigate the impact of background and noise, and give clear guidelines for procedures that are optimized for FL-SMLM. We do also present and discuss our public-domain software package "Fluorescence-Lifetime TrackNTrace," which converts recorded fluorescence microscopy movies into super-resolved FL-SMLM images.

5.
ACS Nano ; 14(10): 14190-14200, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33035050

ABSTRACT

Fluorescence lifetime imaging microscopy is an important technique that adds another dimension to intensity and color acquired by conventional microscopy. In particular, it allows for multiplexing fluorescent labels that have otherwise similar spectral properties. Currently, the only super-resolution technique that is capable of recording super-resolved images with lifetime information is stimulated emission depletion microscopy. In contrast, all single-molecule localization microscopy (SMLM) techniques that employ wide-field cameras completely lack the lifetime dimension. Here, we combine fluorescence-lifetime confocal laser-scanning microscopy with SMLM for realizing single-molecule localization-based fluorescence-lifetime super-resolution imaging. Besides yielding images with a spatial resolution much beyond the diffraction limit, it determines the fluorescence lifetime of all localized molecules. We validate our technique by applying it to direct stochastic optical reconstruction microscopy and points accumulation for imaging in nanoscale topography imaging of fixed cells, and we demonstrate its multiplexing capability on samples with two different labels that differ only by fluorescence lifetime but not by their spectral properties.

6.
J Phys Chem A ; 124(17): 3494-3500, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32255633

ABSTRACT

Fluorescence lifetime imaging (FLIM) has become an important microscopy technique in bioimaging. The two most important of its applications are lifetime-multiplexing for imaging many different structures in parallel, and lifetime-based measurements of Förster resonance energy transfer. There are two principal FLIM techniques, one based on confocal-laser scanning microscopy (CLSM) and time-correlated single-photon counting (TCSPC) and the other based on wide-field microscopy and phase fluorometry. Although the first approach (CLSM-TCSPC) assures high sensitivity and allows one to detect single molecules, it is slow and has a small photon yield. The second allows, in principal, high frame rates (by 2-3 orders of magnitude faster than CLSM), but it suffers from low sensitivity, which precludes its application for single-molecule imaging. Here, we demonstrate that a novel wide-field TCSPC camera (LINCam25, Photonscore GmbH) can be successfully used for single-molecule FLIM, although its quantum yield of detection in the red spectral region is only ∼5%. This is due to the virtually absent background and readout noise of the camera, assuring high signal-to-noise ratio even at low detection efficiency. We performed single-molecule FLIM of different red fluorophores, and we use the lifetime information for successfully distinguishing between different molecular species. Finally, we demonstrate single-molecule metal-induced energy transfer (MIET) imaging which is a first step for three-dimensional single-molecule localization microscopy (SMLM) with nanometer resolution.


Subject(s)
Optical Imaging/methods , Single Molecule Imaging/methods , Signal-To-Noise Ratio
7.
Methods ; 140-141: 32-39, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29454862

ABSTRACT

This chapter presents a concise introduction into the method of Fluorescence Lifetime Correlation Spectroscopy (FLCS). This is an extension of Fluorescence Correlation Spectroscopy (FCS) that analyses fluorescence intensity fluctuations from small detection volumes in samples of ultra-low concentration. FCS has been widely used for investigating diffusion, conformational changes, molecular binding/unbinding equilibria, or chemical reaction kinetics, at single molecule sensitivity. In FCS, this is done by calculating intensity correlation curves for the measured intensity fluctuations. FLCS extends this idea by calculating fluorescence-lifetime specific intensity correlation curves. Thus, FLCS is the method of choice for all studies where a parameter of interest (conformational state, spatial position, molecular environmental condition) is connected with a change in the fluorescence lifetime. After presenting the theoretical and experimental basis of FLCS, the chapter gives an overview of its various applications.


Subject(s)
Fluorescence , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Diffusion , Kinetics , Molecular Conformation , Spectrometry, Fluorescence/instrumentation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...