Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1422764, 2024.
Article in English | MEDLINE | ID: mdl-38966426

ABSTRACT

Purpose: Extraocular electrical stimulation is known to provide neuroprotection for retinal cells in retinal and optic nerve diseases. Currently, the treatment approach requires patients to set up extraocular electrodes and stimulate potentially weekly due to the lack of an implantable stimulation device. Hence, a minimally-invasive implant was developed to provide chronic electrical stimulation to the retina, potentially improving patient compliance for long-term use. The aim of the present study was to determine the surgical and stimulation safety of this novel device designed for neuroprotective stimulation. Methods: Eight normally sighted adult feline subjects were monocularly implanted in the suprachoroidal space in the peripheral retina for 9-39 weeks. Charge balanced, biphasic, current pulses (100 µA, 500 µs pulse width and 50 pulses/s) were delivered continuously to platinum electrodes for 3-34 weeks. Electrode impedances were measured hourly. Retinal structure and function were assessed at 1-, 2-, 4-, 6- and 8-month using electroretinography, optical coherence tomography and fundus photography. Retina and fibrotic thickness were measured from histological sections. Randomized, blinded histopathological assessments of stimulated and non-stimulated retina were performed. Results: All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. The device position was stable after a post-surgery settling period. Median electrode impedance remained within a consistent range (5-10 kΩ) over time. There was no change in retinal thickness or function relative to baseline and fellow eyes. Fibrotic capsule thickness was equivalent between stimulated and non-stimulated tissue and helps to hold the device in place. There was no scarring, insertion trauma, necrosis, retinal damage or fibroblastic response in any retinal samples from implanted eyes, whilst 19% had a minimal histiocytic response, 19% had minimal to mild acute inflammation and 28% had minimal to mild chronic inflammation. Conclusion: Chronic suprathreshold electrical stimulation of the retina using a minimally invasive device evoked a mild tissue response and no adverse clinical findings. Peripheral suprachoroidal electrical stimulation with an implanted device could potentially be an alternative approach to transcorneal electrical stimulation for delivering neuroprotective stimulation.

2.
Invest Ophthalmol Vis Sci ; 59(3): 1410-1424, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29625464

ABSTRACT

Purpose: Following successful clinical outcomes of the prototype suprachoroidal retinal prosthesis, Bionic Vision Australia has developed an upgraded 44-channel suprachoroidal retinal prosthesis to provide a wider field of view and more phosphenes. The aim was to evaluate the preclinical passive safety characteristics of the upgraded electrode array. Methods: Ten normal-sighted felines were unilaterally implanted with an array containing platinum electrodes (44 stimulating and 2 returns) on a silicone carrier near the area centralis. Clinical assessments (color fundus photos, optical coherence tomography, full-field electroretinography, intraocular pressure) were performed under anesthesia prior to surgery, and longitudinally for up to 20 weeks. Histopathology grading of fibrosis and inflammation was performed in two animals at 13 to 15 weeks. Results: Eight animals showed safe electrode array insertion (good retinal health) and good conformability of the array to the retinal curvature. Eight animals demonstrated good mechanical stability of the array with only minor (<2 disc diameters) lateral movement. Four cases of surgical or stability complications occurred due to (1) bulged choroid during surgery, (2) hemorrhage from a systemic bleeding disorder, (3) infection, and (4) partial erosion of thin posterior sclera. There was no change in retinal structure or function (other than that seen at surgery) at endpoint. Histopathology showed a mild foreign body response. Electrodes were intact on electrode array removal. Conclusions: The 44-channel suprachoroidal electrode array has an acceptable passive safety profile to proceed to clinical trial. The safety profile is expected to improve in human studies, as the complications seen are specific to limitations (anatomic differences) with the feline model.


Subject(s)
Choroid/surgery , Electrodes, Implanted , Microelectrodes , Prosthesis Implantation , Retina/surgery , Visual Prosthesis , Animals , Cats , Disease Models, Animal , Electrodes, Implanted/adverse effects , Prosthesis Implantation/adverse effects , Visual Prosthesis/adverse effects
3.
Invest Ophthalmol Vis Sci ; 57(7): 3181-91, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27309622

ABSTRACT

PURPOSE: The resolution provided by present state-of-the-art retinal prostheses is severely limiting for recipients, partly due to the broad spread of activation in the retina in response to monopolar (MP) electrical stimulation. Focused multipolar (FMP) stimulation has been shown to restrict neural activation in the cochlea compared to MP stimulation. We extended the FMP stimulation technique to a two-dimensional electrode array and compared its efficacy to MP and hexapolar (HP) stimulation in the retina. METHODS: Normally-sighted cats (n = 6) were implanted with a suprachoroidal electrode array containing 42 electrodes. Multichannel multiunit spiking activity was recorded from the visual cortex in response to MP, HP, and FMP retinal stimulation. RESULTS: When inferring retinal spread using voltage recordings off the stimulating array, FMP stimulation showed significantly reduced voltages in regions surrounding the primary stimulating electrode. When measuring the retinal and cortical selectivity of neural responses, FMP and HP stimulation showed significantly higher selectivity compared to MP stimulation (separate 2-way ANOVAs, P < 0.05). However, the lowest cortical thresholds for each stimulating electrode were higher for FMP and HP compared to MP stimulation (1-way ANOVA, P < 0.001). No significant differences were observed between FMP and HP stimulation in any measures. CONCLUSIONS: Focused multipolar and HP stimulation using a two-dimensional array are promising techniques to reduce the spread of activation for a retinal prosthesis. Clinical application would be expected to result in smaller phosphenes; thus, reducing phosphene overlap between electrodes and increasing the resolution at the expense of higher thresholds for activation.


Subject(s)
Electric Stimulation/methods , Electrodes, Implanted , Evoked Potentials, Visual/physiology , Retina/physiopathology , Spatial Processing/physiology , Visual Cortex/physiology , Visual Prosthesis , Animals , Cats , Disease Models, Animal , Prosthesis Design , Sensory Thresholds
4.
PLoS One ; 9(5): e97182, 2014.
Article in English | MEDLINE | ID: mdl-24853376

ABSTRACT

PURPOSE: To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis. METHODS: Seven normally-sighted feline subjects were implanted for 96-143 days with a suprachoroidal electrode array and six were chronically stimulated for 70-105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG), optical coherence tomography (OCT) and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs) were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue. RESULTS: All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11-15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses. CONCLUSIONS: Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained stable for stimulation durations of up to 15 weeks. This study has demonstrated the safety and efficacy of suprachoroidal stimulation with charge balanced stimulus currents.


Subject(s)
Electric Stimulation , Retina/physiology , Visual Cortex/physiology , Visual Prosthesis/standards , Animals , Cats , Electric Impedance , Electrodes, Implanted , Electroretinography , Immunohistochemistry , Linear Models , Retina/pathology , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...