Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ChemMedChem ; : e202400301, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877605

ABSTRACT

Quaternary ammonium compounds have served as a first line of protection for human health as surface disinfectants and sanitizers for nearly a century. However, increasing levels of bacterial resistance have spurred the development of novel QAC architectures. In light of the observed reduction in eukaryotic cell toxicity when the alkyl chains on QACs are shorter in nature (≤10C), we prepared 47 QAC architectures that bear multiple short alkyl chains appended to up to three cationic groups, thus rendering them "bushy-tailed" multiQACs. Antibacterial activity was strong (often ~1-4 µM) in a varied set of bushy-tailed architectures, though observed therapeutic indices were not significantly improved over QAC structures bearing fewer and longer alkyl chains.

2.
ChemMedChem ; 19(11): e202300718, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38416542

ABSTRACT

Cationic biocides play a crucial role in the disinfection of domestic and healthcare surfaces. Due to the rise of bacterial resistance towards common cationic disinfectants like quaternary ammonium compounds (QACs), the development of novel actives is necessary for effective infection prevention and control. Toward this end, a series of 15 chimeric biscationic amphiphilic compounds, bearing both ammonium and phosphonium residues, were prepared to probe the structure and efficacy of mixed cationic ammonium-phosphonium structures. Compounds were obtained in two steps and good yields, with straightforward and chromatography-free purifications. Antibacterial activity evaluation of these compounds against a panel of seven bacterial strains, including two MRSA strains as well as opportunistic pathogen A. baumannii, were encouraging, as low micromolar inhibitory activity was observed for multiple structures. Alkyl chain length on the ammonium group was, as expected, a major determinant of bioactivity. In addition, high therapeutic indexes (up to 125-fold) for triphenyl phosphonium-bearing amphiphiles were observed when comparing antimicrobial activity to mammalian cell lysis activity.


Subject(s)
Anti-Bacterial Agents , Disinfectants , Microbial Sensitivity Tests , Organophosphorus Compounds , Quaternary Ammonium Compounds , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemical synthesis , Disinfectants/pharmacology , Disinfectants/chemistry , Disinfectants/chemical synthesis , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Surface-Active Agents/chemical synthesis , Humans , Acinetobacter baumannii/drug effects , Dose-Response Relationship, Drug
3.
ACS Infect Dis ; 9(4): 943-951, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36926876

ABSTRACT

Quaternary ammonium compounds (QACs) serve as a first line of defense against infectious pathogens. As resistance to QACs emerges in the environment, the development of next-generation disinfectants is of utmost priority for human health. Balancing antibacterial potency with environmental considerations is required to effectively counter the development of bacterial resistance. To address this challenge, a series of 14 novel biscationic quaternary phosphonium compounds (bisQPCs) have been prepared as amphiphilic disinfectants through straightforward, high-yielding alkylation reactions. These compounds feature decomposable or "soft" amide moieties in their side chains, anticipated to promote decomposition under environmental conditions. Strong bioactivity against a panel of seven bacterial pathogens was observed, highlighted by single-digit micromolar activity for compounds P6P-12A,12A and P3P-12A,12A. Hydrolysis experiments in pure water and in buffers of varying pH revealed surprising decomposition of the soft QPCs under basic conditions at the phosphonium center, leading to inactive phosphine oxide products; QPC stability (>24 h) was maintained in neutral solutions. The results of this work unveil soft QPCs as a potent and environmentally conscious new class of bisQPC disinfectants.


Subject(s)
Anti-Infective Agents , Disinfectants , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria
4.
ACS Infect Dis ; 9(3): 609-616, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36757826

ABSTRACT

Quaternary ammonium compounds (QACs) are vital disinfectants for the neutralization of pathogenic bacteria in clinical, domestic, and commercial settings. After decades of dependence on QACs, the emergence of antimicrobial resistance to this class of compounds threatens the ability of existing QAC products to effectively manage rising bacterial threats. The need for new disinfectants is therefore urgent, with quaternary phosphonium compounds (QPCs) emerging as a new class of promising antimicrobials that boast significant activity against highly resistant bacteria. Reported here is a series of twenty-one novel QPCs that replace phenyl substituents on the phosphorus center with alkyl groups yet allow for rapid synthetic routes in high yields. Within this series are structures containing methyl, ethyl, or cyclohexyl phosphonium substituents on bisphosphane scaffolds bearing ethyl linkers, affording atom economical structures and ones that represent exact analogs to nitrogenous amphiphiles. The resultant bisQPC structures display high antibacterial efficacy enjoyed by comparably constructed QACs, with three structures in the single-digit micromolar activity range despite structural simplification.


Subject(s)
Anti-Infective Agents , Disinfectants , Disinfectants/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemistry , Bacteria
5.
ChemMedChem ; 18(10): e202300018, 2023 05 16.
Article in English | MEDLINE | ID: mdl-36823400

ABSTRACT

Over the past decades, the shortcomings of established quaternary ammonium disinfectants have become increasingly clear. Although benzalkonium chloride (BAC) has enjoyed nearly a century of significantly protecting human health through surgical preparation, home use, and industrial applications, increasing levels of bacterial resistance have rendered it decreasingly effective. In light of more recent efforts that have informed us that multicationic amphiphilic disinfectants show both higher activity as well as diminished susceptibility to resistance, we embarked on the preparation of 27 multicationic QACs in an attempt to clearly document structure-activity relationships of next-generation BAC structures. Select biscationic BAC derivatives demonstrate single-digit micromolar activity against all seven bacteria tested and MIC values of 2- to 32-fold better than BAC. Particularly notable is the improvement against the more concerning bacteria like Acinetobacter baumannii and Pseudomonas aeruginosa, which pose a modern threat to legacy disinfectants like BAC. With simple synthetic paths, consistently high yields (averaging ∼80 %), and strong biological activity, potent structures with clear SAR trends and strong therapeutic indices have been established.


Subject(s)
Benzalkonium Compounds , Disinfectants , Humans , Benzalkonium Compounds/pharmacology , Disinfectants/pharmacology , Bacteria , Microbial Sensitivity Tests
6.
ChemMedChem ; 17(14): e202200224, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35561149

ABSTRACT

Biscationic quaternary phosphonium compounds (bisQPCs) represent a promising class of antimicrobials, displaying potent activity against both Gram-negative and Gram-positive bacteria. In this study, we explored the effects of structural rigidity on the antimicrobial activity of QPC structures bearing a two-carbon linker between phosphonium groups, testing against a panel of six bacteria, including multiple strains harboring known disinfectant resistance mechanisms. Using simple alkylation reactions, 21 novel compounds were prepared, although alkene isomerization as well as an alkyne reduction were observed during the respective syntheses. The resulting bisQPC compounds showed strong biological activity, but were hampered by diminished solubility of their iodide salts. One compound (P2P-10,10 I) showed single-digit micromolar activity against the entire panel of bacteria. Overall, intriguing biological activity was observed, with less rigid structures displaying better efficacy against Gram-negative strains and more rigid structures demonstrating slightly increased efficacy against S. aureus strains.


Subject(s)
Anti-Infective Agents , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests
7.
Inorg Chem ; 61(16): 6263-6280, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35422117

ABSTRACT

A synthetic route has been developed for a series of 3d homobimetallic complexes of Mn, Fe, Co, Ni, and Cu using three different pyridyldiimine and pyridyldialdimine macrocyclic ligands with ring sizes of 18, 20, and 22 atoms. Crystallographic analyses indicate that while the distances between the metals can be modulated by the size of the macrocycle pocket, the flexibility in the alkyl linkers used to construct the macrocycles enables the ligand to adjust the orientation of the PD(A)I fragments in response to the geometry of the [M2(µ-Cl)2]2+ core, particularly with respect to Jahn-Teller distortions. Analyses by UV-vis spectroscopy and SQUID magnetometry revealed deviations in the properties [M2(µ-Cl)2]2+-containing complexes bound by standard mononucleating ligands, highlighting the ability of macrocycles to use ring size to control the magnetic interactions of pseudo-octahedral, high-spin metal centers.


Subject(s)
Coordination Complexes , Metals , Coordination Complexes/chemistry , Ligands , Magnetics , Metals/chemistry
8.
Chem Sci ; 12(12): 4395-4404, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-34163703

ABSTRACT

A series of tetradentate tris(phosphinimine) ligands (R3P3tren) was developed and bound to CuI to form the trigonal pyramidal, C 3v-symmetric cuprous complexes [R3P3tren-Cu][BArF 4] (1PR3) (PR3 = PMe3, PMe2Ph, PMePh2, PPh3, PMe2(NEt2), BArF 4 = B(C6F5)4). Electrochemical studies on the CuI complexes were undertaken, and the permethylated analog, 1PMe3, was found to display an unprecedentedly cathodic CuI/CuII redox potential (-780 mV vs. Fc/Fc+ in isobutyronitrile). Elucidation of the electronic structures of 1PR3 via density functional theory (DFT) studies revealed atypical valence manifold configurations, resulting from strongly σ-donating phosphinimine moieties in the xy-plane that destabilize 2e (d xy /d x 2-y 2 ) orbital sets and uniquely stabilized a 1 (d z 2 ) orbitals. Support is provided that the a 1 stabilizations result from intramolecular electrostatic fields (ESFs) generated from cationic character on the phosphinimine moieties in R3P3tren. This view is corroborated via 1-dimensional electrostatic potential maps along the z-axes of 1PR3 and their isostructural analogues. Experimental validation of this computational model is provided upon oxidation of 1PMe3 to the cupric complex [Me3P3tren-Cu][OTf]2 (2PMe3), which displays a characteristic Jahn-Teller distortion in the form of a see-saw, pseudo-C s-symmetric geometry. A systematic anodic shift in the potential of the CuI/CuII redox couple as the steric bulk in the secondary coordination sphere increases is explained through the complexes' diminishing ability to access the ideal C s-symmetric geometry upon oxidation. The observations and calculations discussed in this work support the presence of internal electrostatic fields within the copper complexes, which subsequently influence the complexes' properties via a method orthogonal to classic ligand field tuning.

9.
Polyhedron ; 1982021 Apr 01.
Article in English | MEDLINE | ID: mdl-33776186

ABSTRACT

A series of 2,6-diiminopyridine-derived macrocyclic ligands have been synthesized via [2+2] condensation around alkaline earth metal triflate salts. The inclusion of a tert-butyl group at the 4-position of the pyridine ring of the macrocyclic synthons results in macrocyclic complexes that are soluble in common organic solvents, thereby enabling a systematic comparison of the physical properties of the complexes by NMR spectroscopy, mass spectrometry, solution-phase UV-Vis spectroscopy, cyclic voltammetry and single-crystal X-ray crystallography. Solid-state structures determined crystallographically demonstrate increased twisting in the ligand, concurrent with either a decrease in ion size or an increase in macrocycle ring size (18, 20, or 22 membered rings). The degree of folding and twisting within the macrocycle can be quantified using parameters derived from the Npyr-M-Npyr bond angle and the relative orientation of the pyridinediimine (PDI) and pyridinedialdimine (PDAI) fragments to each other within the solid state structures. Cyclic voltammetry and UV-Vis spectroscopy were used to compare the relative energies of the imine π* orbital of the redox active PDI and PDAI components in the macrocycle when coordinated to redox inactive metals. Both methods indicate the change from a methyl to hydrogen substitution on the imine carbon lowers the energy of the ligand π* system.

10.
Dalton Trans ; 49(23): 7796-7806, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32459241

ABSTRACT

Pincer ligands have a remarkable ability to impart control over small molecule activation chemistry and catalytic activity; therefore, the design of new pincer ligands and the exploration of their reactivity profiles continues to be a frontier in synthetic inorganic chemistry. In this work, a novel, monoanionic NNN pincer ligand containing two phosphinimine donors was used to create a series of mononuclear Ni complexes. Ligand metallation in the presence of NaOPh yielded a nickel phenoxide complex that was used to form a mononuclear hydride complex on treatment with pinacolborane. Attempts at ligand metallation with NaN(SiMe3)2 resulted in the activation of both phosphinimine methyl groups to yield an anionic, cis-dialkyl product, in which dissociation of one phosphinimine nitrogen leads to retention of a square planar coordination environment about Ni. Protonolysis of this dialkyl species generated a monoalkyl product that retained the 4-membered metallacycle. The insertion of 2,6-dimethylphenyl isocyanide (xylNC) into this nickel metallacycle, followed by proton transfer, generated a new five-membered nickel metallacycle. Kinetic studies suggested rate-limiting proton transfer (KIE ≥ 3.9 ± 0.5) from the α-methylene unit of the putative iminoacyl intermediate.

11.
Angew Chem Int Ed Engl ; 59(35): 15215-15219, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32441448

ABSTRACT

Despite their connection to ammonia synthesis, little is known about the ability of iron-bound, bridging nitrides to form N-H bonds. Herein we report a linear diiron bridging nitride complex supported by a redox-active macrocycle. The unique ability of the ligand scaffold to adapt to the geometric preference of the bridging species was found to facilitate the formation of N-H bonds via proton-coupled electron transfer to generate a µ-amide product. The structurally analogous µ-silyl- and µ-borylamide complexes were shown to form from the net insertion of the nitride into the E-H bonds (E=B, Si). Protonation of the parent bridging amide produced ammonia in high yield, and treatment of the nitride with PhSH was found to liberate NH3 in high yield through a reaction that engages the redox-activity of the ligand during PCET.


Subject(s)
Electron Transport/physiology , Nitrogen/chemistry , Hydrogen Bonding , Oxidation-Reduction
12.
Inorg Chem ; 59(7): 4200-4214, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-31587561

ABSTRACT

This report describes an isostructural series of dinuclear iron, cobalt, and nickel complexes bound by a redox-active macrocyclic ligand. The series spans five redox levels (34-38 e-/cluster core), allowing for a detailed investigation into both the degree of metal-metal interaction and the extent of ligand-based redox-activity. Magnetometry, electrochemistry, UV-vis-NIR absorption spectroscopy, and crystallography were used in conjunction with DFT computational analyses to extract the electronic structures of the six homodinuclear complexes. The isoelectronic, 34 e- species [(3PDI2)Fe2(PMe3)2(µ-Cl)](OTf) and [(3PDI2)Co2(PMe3)2(µ-Cl)](OTf)3 exhibit metal-metal single bonds, with varying amounts of electron density delocalization into the ligand as a function of the effective nuclear charge of the metal ions. One- and two-electron reductions of [(3PDI2)Co2(PMe3)2(µ-Cl)](OTf)3 lead to isolable products, which show successive increases in both the Co-Co distances and the extent of reduction of the ligand manifold. This trend results from reduction of a Co-Co σ* orbital, which was found to be heavily mixed with the redox-active manifold of the 3PDI2 ligand. A similar trend was observed in the 37 and 38 e- dinickel complexes [(3PDI2)Ni2(PMe3)2(µ-Cl)](OTf)2 and [(3PDI2)Ni2(PMe3)2(µ-Cl)](OTf); however, their higher electron counts lead to high-spin ground states that result from occupation of a high-lying δ/δ* manifold with significant Ni-NPDI σ* character. This change in ground state configuration reforms a M-M bonding interaction in the 37 e- complex, but formation of the 38 e- species again disrupts the M-M bond alongside the transfer of electron density to the ligand.

13.
Inorg Chem ; 58(18): 12234-12244, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31448589

ABSTRACT

A dinucleating macrocyclic ligand with two redox-active, pyridyldiimine components was shown to undergo reversible ligand folding to accommodate various substitution patterns, metal ion spin states, and degrees of Fe-Fe bonding within the cluster. An unfolded-ligand geometry with a rectangular Fe2(µ-Cl)2 core and an Fe-Fe distance of 3.3262(5) Å served as a direct precursor to two different folded-ligand complexes. Chemical reduction in the presence of PPh3 resulted in a diamagnetic, folded ligand complex with an Fe-Fe bonding interaction (dFe-Fe = 2.7096(17) Å) between two intermediate spin (SFe = 1) Fe(II) centers. Ligand folding was also induced through anion exchange on the unfolded-ligand species, producing a complex with three PhS- ligands and a temperature-dependent Fe-Fe distance. In this latter example, the weak ligand field of the thiolate ligands led to a product with weakly coupled, high-spin Fe(II) ions (SFe = 2; J = -50.1 cm-1) that form a bonding interaction in the ground state and a nonbonding interaction in the excited state(s), as determined by SQUID magnetometry and variable temperature crystallography. Finally, both folded-ligand complexes were shown to reform an unfolded-ligand geometry through convergent syntheses of a complex with an Fe-Fe bonded Fe2(µ-SPh)2 core (dFe-Fe = 2.7320(11) Å). Experimentally validated DFT calculations were used to investigate the electronic structures of all species as a way to understand the origin of Fe-Fe bonding interactions, the extent of ligand reduction, and the nature of the spin systems that result from multiple, weakly interacting spin centers.

14.
ACS Cent Sci ; 3(3): 153-155, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28386590
SELECTION OF CITATIONS
SEARCH DETAIL
...