Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Histol Histopathol ; : 18755, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38725394

ABSTRACT

Micronodular arrangement of epithelial cells and lymphoid B-cell hyperplasia with follicles are both peculiar histological features in thymic tissue. Such features may especially occur in thymic epithelial tumors. The most common form is called micronodular thymoma with lymphoid stroma. We have recently described some characteristics of thymic micronodular carcinoma with lymphoid hyperplasia, highlighting how this carcinomatous counterpart should not be misdiagnosed as a thymoma. In this review, we discuss these two entities but also other mimics, which may occur in the anterior mediastinum. These mimics include various types of cellular micronodules and lymphoid backgrounds encompassing a wide range of mediastinal lesions. Non-neoplastic lesions, such as thymic nodular epithelial hyperplasia, thymic lymphoid hyperplasia, or sarcoidosis, as well as tumors of very varying aggressiveness, such as micronodular thymic epithelial tumors, low-grade lymphoma, seminoma, or lymphoepithelial carcinoma, are discussed. We show how these lesions may be misleading and we describe how a correct diagnostic may be obtained in current practice.

2.
Chemosphere ; 361: 142421, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797202

ABSTRACT

Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB' irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.


Subject(s)
Daphnia , Disinfection , Methylene Blue , Photosensitizing Agents , Wastewater , Wastewater/chemistry , Disinfection/methods , Daphnia/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Animals , Methylene Blue/pharmacology , Methylene Blue/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Bacteriophages/drug effects , Waste Disposal, Fluid/methods , Water Purification/methods , Ecotoxicology
3.
Cell ; 187(11): 2817-2837.e31, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38701783

ABSTRACT

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Subject(s)
Killer Cells, Natural , Membrane Proteins , Animals , Female , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Bone Marrow/metabolism , Cell Lineage , Dendritic Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Langerhans Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Skin/metabolism , Mice, Inbred C57BL
4.
Liver Int ; 44(7): 1680-1688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38554045

ABSTRACT

BACKGROUND AND AIMS: Systemic mastocytosis (SM) is characterized by the accumulation of atypical mast cells (MCs) in organs. Liver histology of SM has been marginally described and accurate histological classification is critical, given the consequences of aggressive SM diagnosis. We aimed to describe the histological features associated with liver SM using updated tools. METHODS: Using the database of the French Reference Centre for Mastocytosis, we retrospectively identified patients with a liver biopsy (LB) and a diagnosis of SM. All LB procedures were performed according to the local physician in charge and centrally reviewed by an expert pathologist. RESULTS: A total of 28 patients were included: 6 had indolent SM, 9 had aggressive SM, and 13 had SM with an associated hematologic neoplasm. Twenty-five (89%) patients presented hepatomegaly, and 19 (68%) had portal hypertension. The LB frequently showed slight sinusoid dilatation (82%). Fibrosis was observed in 3/6 indolent SM and in almost all advanced SM cases (21/22), but none of them showed cirrhosis. A high MC burden (>50 MCs/high-power field) was correlated with elevated blood alkaline phosphatase levels (p = .030). The presence of portal hypertension was associated with a higher mean fibrosis grade (1.6 vs. 0.8 in its absence; p = .026). In advanced SM, the presence of nodular regenerative hyperplasia (NRH) was associated with decreased overall survival (9.5 vs. 46.3 months, p = .002). CONCLUSIONS: MC infiltration induced polymorphic hepatic lesions and the degree of fibrosis is associated with portal hypertension. NRH identifies a poor prognosis subgroup of patients with advanced SM. Assessing liver histology can aid in SM prognostic evaluation.


Subject(s)
Hepatomegaly , Liver , Mastocytosis, Systemic , Humans , Mastocytosis, Systemic/pathology , Mastocytosis, Systemic/complications , Retrospective Studies , Female , Liver/pathology , Male , Middle Aged , Adult , Biopsy , Hepatomegaly/pathology , Hepatomegaly/etiology , Aged , Hypertension, Portal/pathology , Hypertension, Portal/etiology , France , Liver Cirrhosis/pathology , Mast Cells/pathology , Alkaline Phosphatase/blood , Prognosis
5.
Lung Cancer ; 189: 107479, 2024 03.
Article in English | MEDLINE | ID: mdl-38306885

ABSTRACT

INTRODUCTION: Pathologists are staging thymic epithelial tumors (TET) according to the 8th UICC/AJCC TNM system. Within the French RYTHMIC network, dedicated to TET, agreement on pathologic tumor stage (pT) among the pathology panelists was difficult. The aim of our study was to determine the interobserver reproducibility of pT at an international level, to explore the source of discrepancies and potential interventions to address these. METHODS: An international panel of pathologists was recruited through the International Thymic Malignancy Interest Group (ITMIG). The study focused on invasion of mediastinal pleura, pericardium, and lung. From a cohort of cases identified as challenging within the RYTHMIC network, we chose a series of test and validation cases (n = 5 and 10, respectively). RESULTS: Reproducibility of the pT stage was also challenging at an international level as none of the 15 cases was classified as the same pT stage by all ITMIG pathologists. The agreement rose from slight (κ = 0.13) to moderate (κ = 0.48) between test and validation series. Discussion among the expert pathologists pinpointed two major reasons underlying discrepancies: 1) Thymomas growing with their "capsule" and adhering to the pleurae, pericardium, or lung were often misinterpreted as invading these structures. 2) Recognition of the mediastinal pleura was identified as challenging. CONCLUSION: Our study underlines that the evaluation of the pT stage of TET is problematic and needs to be addressed in more detail in an upcoming TNM classification. The publication of histopathologic images of landmarks, including ancillary tests could improve reproducibility for future TNM classifications.


Subject(s)
Lung Neoplasms , Neoplasms, Glandular and Epithelial , Thymus Neoplasms , Humans , Reproducibility of Results , Thymus Neoplasms/diagnosis , Neoplasms, Glandular and Epithelial/diagnosis
6.
Eur J Cancer ; 190: 112950, 2023 09.
Article in English | MEDLINE | ID: mdl-37441939

ABSTRACT

DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.


Subject(s)
Antineoplastic Agents , Neuroblastoma , United States , Adult , Humans , Child , Adolescent , Antineoplastic Agents/therapeutic use , BRCA1 Protein , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , United States Food and Drug Administration , Retrospective Studies , BRCA2 Protein , Neuroblastoma/drug therapy , Biomarkers , DNA Damage , Membrane Proteins , Protein-Tyrosine Kinases , Protein Serine-Threonine Kinases
7.
JCI Insight ; 8(5)2023 03 08.
Article in English | MEDLINE | ID: mdl-36749641

ABSTRACT

Acute kidney injury is one of the most important complications in patients with COVID-19 and is considered a negative prognostic factor with respect to patient survival. The occurrence of direct infection of the kidney by SARS-CoV-2, and its contribution to the renal deterioration process, remain controversial issues. By studying 32 renal biopsies from patients with COVID-19, we verified that the major pathological feature of COVID-19 is acute tubular injury (ATI). Using single-molecule fluorescence in situ hybridization, we showed that SARS-CoV-2 infected living renal cells and that infection, which paralleled renal angiotensin-converting enzyme 2 expression levels, was associated with increased death. Mechanistically, a transcriptomic analysis uncovered specific molecular signatures in SARS-CoV-2-infected kidneys as compared with healthy kidneys and non-COVID-19 ATI kidneys. On the other hand, we demonstrated that SARS-CoV-2 and hantavirus, 2 RNA viruses, activated different genetic networks despite triggering the same pathological lesions. Finally, we identified X-linked inhibitor of apoptosis-associated factor 1 as a critical target of SARS-CoV-2 infection. In conclusion, this study demonstrated that SARS-CoV-2 can directly infect living renal cells and identified specific druggable molecular targets that can potentially aid in the design of novel therapeutic strategies to preserve renal function in patients with COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , COVID-19/complications , In Situ Hybridization, Fluorescence , Kidney/pathology , Biopsy
8.
Comput Ind Eng ; 172: 108603, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36061977

ABSTRACT

With the increasing demand for hospital services amidst the COVID-19 pandemic, allocation of limited public resources and management of healthcare services are of paramount importance. In the field of patient flow scheduling, previous research primarily focused on classical-based objective functions, while ignoring environmental-based objective functions. This study presents a flexible job shop scheduling problem to optimize patient flow and, thereby, minimize the total carbon footprint, as the sustainability-based objective function. Since flexible job shop scheduling is an NP-hard problem, a metaheuristic optimization algorithm, called Chaotic Salp Swarm Algorithm Enhanced with Opposition-Based Learning and Sine Cosine (CSSAOS), was developed. The proposed algorithm integrates the Salp Swarm Algorithm (SSA) with chaotic maps to update the position of followers, the sine cosine algorithm to update the leader position, and opposition-based learning for a better exploration of the search space. generating more accurate solutions. The proposed method was successfully applied in a real-world case study and demonstrated better performance than other well-known metaheuristic algorithms, including differential evolution, genetic algorithm, grasshopper optimization algorithm, SSA based on opposition-based learning, quantum evolutionary SSA, and whale optimization algorithm. In addition, it was found that the proposed method is scalable to different sizes and complexities.

9.
Adv Radiat Oncol ; 7(3): 100890, 2022.
Article in English | MEDLINE | ID: mdl-35647396

ABSTRACT

Purpose: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. Methods and Materials: Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. Results: One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the "hero" model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. Conclusions: ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan.

10.
Mol Ecol ; 31(9): 2644-2663, 2022 05.
Article in English | MEDLINE | ID: mdl-35262986

ABSTRACT

The salinity barrier that separates marine and freshwater biomes is probably the most important division in biodiversity on Earth. Those organisms that successfully performed this transition had access to new ecosystems while undergoing changes in selective pressure, which often led to major shifts in diversification rates. While these transitions have been extensively investigated in animals, the tempo, mode, and outcome of crossing the salinity barrier have been scarcely studied in other eukaryotes. Here, we reconstructed the evolutionary history of the species complex Cyphoderia ampulla (Euglyphida: Cercozoa: Rhizaria) based on DNA sequences from the nuclear SSU rRNA gene and the mitochondrial cytochrome oxidase subunit I gene, obtained from publicly available environmental DNA data (GeneBank, EukBank) and isolated organisms. A tree calibrated with euglyphid fossils showed that four independent transitions towards freshwater systems occurred from the mid-Miocene onwards, coincident with important fluctuations in sea level. Ancestral trait reconstructions indicated that the whole family Cyphoderiidae had a marine origin and suggest that ancestors of the freshwater forms were euryhaline and lived in environments with fluctuating salinity. Diversification rates did not show any obvious increase concomitant with ecological transitions, but morphometric analyses indicated that species increased in size and homogenized their morphology after colonizing the new environments. This suggests adaptation to changes in selective pressure exerted by life in freshwater sediments.


Subject(s)
Military Personnel , Rhizaria , Animals , Ecosystem , Eukaryota , Fresh Water , Humans , Phylogeny , Salinity
11.
Am J Surg Pathol ; 46(6): 742-753, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34799485

ABSTRACT

Despite the impressive efficacy of chimeric antigen receptor (CAR) T-cell therapy (CART) in B-cell non-Hodgkin lymphomas, durable responses are uncommon. The histopathologic and molecular features associated with treatment failure are still largely unknown. Therefore, we have analyzed 19 sequential tumor samples from 9 patients, prior anti-CD19 CART (pre-CART) and at relapse (post-CART), using immunohistochemistry, fluorescence in situ hybridization, array comparative genomic hybridization, next-generation DNA and RNA sequencing, and genome-scale DNA methylation. The initial diagnosis was diffuse large B-cell lymphoma (n=6), double-hit high-grade B-cell lymphoma (n=1), and Burkitt lymphoma (n=2). Histopathologic features were mostly retained at relapse in 7/9 patients, except the frequent loss of 1 or several B-cell markers. The remaining 2 cases (1 diffuse large B-cell lymphoma and 1 Burkitt lymphoma) displayed a dramatic phenotypic shift in post-CART tumors, with the drastic downfall of B-cell markers and emergence of T-cell or histiocytic markers, despite the persistence of identical clonal immunoglobulin gene rearrangements. The post-CART tumor with aberrant T-cell phenotype showed reduced mRNA expression of most B-cell genes with increased methylation of their promoter. Fluorescence in situ hybridization and comparative genomic hybridization showed global stability of chromosomal alterations in all paired samples, including 17p/TP53 deletions. New pathogenic variants acquired in post-CART samples included mutations triggering the PI3K pathway (PIK3R1, PIK3R2, PIK3C2G) or associated with tumor aggressiveness (KRAS, INPP4B, SF3B1, SYNE1, TBL1XR1). These results indicate that CART-resistant B-cell non-Hodgkin lymphomas display genetic remodeling, which may result in profound dysregulation of B-cell differentiation. Acquired mutations in the PI3K and KRAS pathways suggest that some targeted therapies could be useful to overcome CART resistance.


Subject(s)
Burkitt Lymphoma , Lymphoma, Large B-Cell, Diffuse , Cell Transdifferentiation , Comparative Genomic Hybridization , Genomics , Humans , Immunotherapy, Adoptive/methods , In Situ Hybridization, Fluorescence , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/therapy , Neoplasm Recurrence, Local , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/genetics
12.
J Transl Genet Genom ; 5: 200-217, 2021.
Article in English | MEDLINE | ID: mdl-34622145

ABSTRACT

AIM: Recessive genetic variation is thought to play a role in non-Hodgkin lymphoma (NHL) etiology. Runs of homozygosity (ROH), defined based on long, continuous segments of homozygous SNPs, can be used to estimate both measured and unmeasured recessive genetic variation. We sought to examine genome-wide homozygosity and NHL risk. METHODS: We used data from eight genome-wide association studies of four common NHL subtypes: 3061 chronic lymphocytic leukemia (CLL), 3814 diffuse large B-cell lymphoma (DLBCL), 2784 follicular lymphoma (FL), and 808 marginal zone lymphoma (MZL) cases, as well as 9374 controls. We examined the effect of homozygous variation on risk by: (1) estimating the fraction of the autosome containing runs of homozygosity (FROH); (2) calculating an inbreeding coefficient derived from the correlation among uniting gametes (F3); and (3) examining specific autosomal regions containing ROH. For each, we calculated beta coefficients and standard errors using logistic regression and combined estimates across studies using random-effects meta-analysis. RESULTS: We discovered positive associations between FROH and CLL (ß = 21.1, SE = 4.41, P = 1.6 × 10-6) and FL (ß = 11.4, SE = 5.82, P = 0.02) but not DLBCL (P = 1.0) or MZL (P = 0.91). For F3, we observed an association with CLL (ß = 27.5, SE = 6.51, P = 2.4 × 10-5). We did not find evidence of associations with specific ROH, suggesting that the associations observed with FROH and F3 for CLL and FL risk were not driven by a single region of homozygosity. CONCLUSION: Our findings support the role of recessive genetic variation in the etiology of CLL and FL; additional research is needed to identify the specific loci associated with NHL risk.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-458516

ABSTRACT

Mast cells are key actors of innate immunity and Th2 adaptive immune response which counterbalance Th1 response, critical for anti-viral immunity. Clonal Mast Cells Activation Disorders (cMCADs) such as mastocytosis and clonal mast cells activation syndrome are characterized by an abnormal mast cells accumulation and/or activation. No data have been published on the anti-viral immune response of patients with cMCADs. The aims of the study were to collected, in a comprehensive way, outcomes of cMCADs patients who experienced a biologically-proven COVID-19 and to characterize both anti-endemic coronaviruses and specific anti-SARS-CoV-2 immune responses in these patients. Clinical follow-up and outcome data were collected prospectively for one year within the French rare disease network CEREMAST encompassing patients from all over the country. Anti-SARS-CoV-2 and anti-endemic coronaviruses specific T-cells were assessed with an enzyme-linked immunospot assay (EliSpot) and anti-SARS-CoV-2 humoral response with dosage of circulating levels of specific IgG, IgA and neutralizing antibodies. Overall, 32 cMCADs patients were identified. None of them required non-invasive or mechanical ventilation; two patients were hospitalized to receive oxygen and steroid therapy. In 21 patients, a characterization of the SARS-CoV-2-specific immune response has been performed. A majority of patients showed a high proportion of circulating SARS-CoV-2-specific interferon (IFN)-{gamma} producing T-cells and high levels of anti-Spike IgG antibodies with neutralizing activity. In addition, no defects in anti-endemic coronaviruses responses were found in patients with cMCADs compared to non-cMCADs controls. Patients with cMCADs frequently showed a spontaneous IFN-{gamma} T-cell production in absence of any stimulation that correlated with circulating basal tryptase levels, a marker of mast cells burden. These findings underscore that patients with cMCADs might be not at risk of severe COVID-19 and the spontaneous IFN-{gamma} production might explain this observation. Author SummaryMast cells are immune cells involved in many biological processes including the anti-microbial response. However, previous studies suggest that mast cells may have a detrimental role in the response against viruses such as SARS-CoV-2, responsible for COVID-19. When a mutation occurs in mast cells, it can lead to a group of diseases called clonal mast cells activation disorders (cMCADs), characterized by deregulated activation of these cells. Hence, patients with cMCADs might be more susceptible to severe COVID-19 than general population. We therefore conducted a 1-year study in France to collect data from all cMCADs patients included in the CEREMAST rare disease French network and who experienced COVID-19. Interestingly, we did not find any severe COVID-19 (i.e. requiring non-invasive or mechanical ventilation) in spite of well-known risk factors for severe COVID-19 in a part of cMCADs patients. We then have studied the immune response against SARS-CoV-2 and other endemic coronaviruses in these patients. We did not observe any abnormalities in the immune response either at the level of T and B lymphocytes. These findings underscore that these patients might not be at risk of severe COVID-19 as one might have feared.

14.
Comput Biol Med ; 135: 104624, 2021 08.
Article in English | MEDLINE | ID: mdl-34247131

ABSTRACT

The prediction by classification of side effects incidence in a given medical treatment is a common challenge in medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and classification. The primary objective of such algorithms is to use several features to predict dichotomous responses (e.g., disease positive/negative). Similar to statistical inference modelling, ML modelling is subject to the class imbalance problem and is affected by the majority class, increasing the false-negative rate. In this study, seventy-nine ML models were built and evaluated to classify approximately 2000 participants from 26 hospitals in eight different countries into two groups of radiotherapy (RT) side effects incidence based on recorded observations from the international study of RT related toxicity "REQUITE". We also examined the effect of sampling techniques and cost-sensitive learning methods on the models when dealing with class imbalance. The combinations of such techniques used had a significant impact on the classification. They resulted in an improvement in incidence status prediction by shifting classifiers' attention to the minority group. The best classification model for RT acute toxicity prediction was identified based on domain experts' success criteria. The Area Under Receiver Operator Characteristic curve of the models tested with an isolated dataset ranged from 0.50 to 0.77. The scale of improved results is promising and will guide further development of models to predict RT acute toxicities. One model was optimised and found to be beneficial to identify patients who are at risk of developing acute RT early-stage toxicities as a result of undergoing breast RT ensuring relevant treatment interventions can be appropriately targeted. The design of the approach presented in this paper resulted in producing a preclinical-valid prediction model. The study was developed by a multi-disciplinary collaboration of data scientists, medical physicists, oncologists and surgeons in the UK Radiotherapy Machine Learning Network.


Subject(s)
Data Science , Machine Learning , Algorithms , Humans , Models, Statistical
15.
Front Oncol ; 11: 638897, 2021.
Article in English | MEDLINE | ID: mdl-33959502

ABSTRACT

Relationships between c-Rel and GCB-DLBCLs remain unclear. We found that strong c-Rel DNA-binding activity was mostly found in GCBs on two independent series of 48 DLBCLs and 66 DLBCLs, the latter issued from the GHEDI series. c-Rel DNA-binding activity was associated with increased REL mRNA expression. Extending the study to the whole GHEDI and Lenz DLBCL published series of 202 and 233 cases, it was found that the c-Rel gene expression profile (GEP) overlapped partially (12%) but only with the GCB GEP and not with the GEP of ABC-DLBCLs. Cases with both overexpression of REL mRNA and c-Rel GEP were defined as those having a c-Rel signature. These cases were GCBs in 88 and 83% of the GHEDI or Lenz's DLBCL series respectively. The c-Rel signature was also associated with various recurrent GCB-DLBCL genetic events, including REL gains, BCL2 translocation, MEF2B, EZH2, CREBBP, and TNFRSF14 mutations and with the EZB GCB genetic subtype. By CGH array, the c-Rel signature was specifically correlated with 2p15-16.1 amplification that includes XPO1, BCL11A, and USP34 and with the 22q11.22 deletion that covers IGLL5 and PRAME. The total number of gene copy number aberrations, so-called genomic imbalance complexity, was decreased in cases with the c-Rel signature. These cases exhibited a better overall survival. Functionally, overexpression of c-Rel induced its constitutive nuclear localization and protected cells against apoptosis while its repression tended to increase cell death. These results show that, clinically and biologically, c-Rel is the pivotal NF-κB subunit in the GCB-DLBCL subgroup. Functionally, c-Rel overexpression could directly promote DLBCL tumorigenesis without need for further activation signals.

17.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33497358

ABSTRACT

Hirschsprung disease (HSCR) is the most frequent developmental anomaly of the enteric nervous system, with an incidence of 1 in 5000 live births. Chronic intestinal pseudo-obstruction (CIPO) is less frequent and classified as neurogenic or myogenic. Isolated HSCR has an oligogenic inheritance with RET as the major disease-causing gene, while CIPO is genetically heterogeneous, caused by mutations in smooth muscle-specific genes. Here, we describe a series of patients with developmental disorders including gastrointestinal dysmotility, and investigate the underlying molecular bases. Trio-exome sequencing led to the identification of biallelic variants in ERBB3 and ERBB2 in 8 individuals variably associating HSCR, CIPO, peripheral neuropathy, and arthrogryposis. Thorough gut histology revealed aganglionosis, hypoganglionosis, and intestinal smooth muscle abnormalities. The cell type-specific ErbB3 and ErbB2 function was further analyzed in mouse single-cell RNA sequencing data and in a conditional ErbB3-deficient mouse model, revealing a primary role for ERBB3 in enteric progenitors. The consequences of the identified variants were evaluated using quantitative real-time PCR (RT-qPCR) on patient-derived fibroblasts or immunoblot assays on Neuro-2a cells overexpressing WT or mutant proteins, revealing either decreased expression or altered phosphorylation of the mutant receptors. Our results demonstrate that dysregulation of ERBB3 or ERBB2 leads to a broad spectrum of developmental anomalies, including intestinal dysmotility.


Subject(s)
Developmental Disabilities/genetics , Intestinal Pseudo-Obstruction/genetics , Mutation , Neuregulin-1/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-3/genetics , Adolescent , Animals , Child, Preschool , Developmental Disabilities/pathology , Disease Models, Animal , Female , Gastrointestinal Motility/genetics , Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Humans , Infant, Newborn , Intestinal Pseudo-Obstruction/pathology , Male , Mice , Models, Molecular , Pedigree , Phenotype , Pregnancy , Receptor, ErbB-2/chemistry , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/deficiency
18.
Eur J Cancer ; 143: 158-167, 2021 01.
Article in English | MEDLINE | ID: mdl-33316754

ABSTRACT

BACKGROUND: Classification of thymic epithelial tumours (TETs) is known to be challenging; however, the level of discordances at a nationwide level between initial and expert diagnosis and their clinical consequences are currently unknown. RYTHMIC is a national network dedicated to the management of TET based on initial histological diagnosis, followed by an additional expert review of all cases. Our aim was to evaluate the discordances between initial and expert diagnoses and whether they would have led to different clinical management. PATIENTS AND METHODS: We conducted a retrospective analysis of the cohort of patients discussed at RYTHMIC tumour board from January 2012 to December 2016. Assessment of disagreement was made for histological typing and for staging. The discordances were classified as major or minor based on whether they would have changed or not the proposed therapeutic strategy, respectively. Follow-up of the patients with major discordances was conducted until December 2018. RESULTS: Four hundred sixty-seven patients were reviewed, and 183 (39%) discordances were identified either related to histological subtype (132) and/or stage (72). Major discordances were identified in 27 patients (6%). They included 16 patients with TET for whom treatment recommendation based on the central review would have been post-operative radiotherapy, whereas it had not been the case. However, follow-up did not show any progression among the 15 patients with high-grade histology and/or stage resected thymomas. On the other hand, among the remaining 11 patients including 7 with a diagnosis other than TET, the overall management or follow-up would have been completely different with the expert diagnosis. CONCLUSION: Our real-life cohort reveals a high level of discordances considering TET diagnosis and supports expert review for optimal clinical management.


Subject(s)
Neoplasms, Glandular and Epithelial/diagnosis , Neoplasms, Glandular and Epithelial/therapy , Thymus Neoplasms/diagnosis , Thymus Neoplasms/therapy , Cohort Studies , Female , Humans , Male , Retrospective Studies
19.
Ann Pathol ; 41(2): 212-215, 2021 Apr.
Article in French | MEDLINE | ID: mdl-32798091

ABSTRACT

We report the case of a 46-year-old male patient presenting with a Claude Bernard-Horner Syndrome. Clinical evaluation showed a clonal B-cell population, lambda restricted. PET-scan captured femoral and axillary lymph nodes. Therefore the diagnosis of a marginal zone lymphoma was posted for which an attitude of watchful waiting was suggested. Eighteen months later, the patient developed an inguinal adenopathy. This lymph node led to the diagnosis of a nodular sclerosing Hodgkin lymphoma. Initial treatment with ABVD showed a good response, but the patient relapsed after eight months. A second biopsy confirmed the diagnosis of a marginal zone lymphoma but also identified giant Reed-Sternberg cells, (CD15+, CD30+ and CD20+). The initial biopsy was revised. This last diagnosis of a nodal marginal zone lymphoma with presence of Reed-Sternberg cells is rarely described in the literature. Several scientific theories can be found. Some cases described a transformation of non-Hodgkin lymphoma that presented Reed-Sternberg cells, other cases mentioned a collision or composite tumor. An accidental finding of Reed-Sternberg cells can be seen by after an infectious disease such as EBV. The presence of only Reed-Sternberg cells in a non-Hodgkin lymphoma is not sufficient to make a diagnosis of collision tumor.


Subject(s)
Hodgkin Disease , Lymphoma, B-Cell, Marginal Zone , Antineoplastic Combined Chemotherapy Protocols , Bleomycin , Dacarbazine , Doxorubicin , Hodgkin Disease/diagnosis , Humans , Lymph Nodes , Lymphoma, B-Cell, Marginal Zone/diagnosis , Male , Middle Aged , Pathologists , Reed-Sternberg Cells , Vinblastine
SELECTION OF CITATIONS
SEARCH DETAIL
...